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License Agreement

LICENSE AGREEMENT

License Agreement for NVIDIA MDL Specification

IMPORTANT NOTICE – READ CAREFULLY: This License Agreement (“License”) for the NVIDIA MDL Specification (“the
Specification”), is the LICENSE which governs use of the Specification of NVIDIA Corporation and its subsidiaries (“NVIDIA”) as
set out below. By copying, or otherwise using the Specification, You (as defined below) agree to be bound by the terms of this LICENSE.
If You do not agree to the terms of this LICENSE, do not copy or use the Specification.

RECITALS

This license permits you to use the Specification, without modification for the purposes of reading, writing and processing of content written
in the language as described in the Specification, such content may include, without limitation, applications that author MDL content, edit
MDL content including material parameter editors and applications using MDL content for rendering.

1. DEFINITIONS.

Licensee. “Licensee,” “You,” or “Your” shall mean the entity or individual that uses the Specification.

2. LICENSE GRANT.

2.1. NVIDIA hereby grants you the right, without charge, on a perpetual, non- exclusive and worldwide basis, to utilize the
Specification for the purpose of developing, making, having made, using, marketing, importing, offering to sell or license, and
selling or licensing, and to otherwise distribute, products complying with the Specification, in all cases subject to the conditions
set forth in this Agreement and any relevant patent (save as set out below) and other intellectual property rights of third parties
(which may include NVIDIA). This license grant does not include the right to sublicense, modify or create derivatives of the
Specification. For the avoidance of doubt, products implementing this Specification are not deemed to be derivative works of the
Specification.

2.2. NVIDIA may have patents and/or patent applications that are necessary for you to license in order to make, sell, or distribute
software programs that are based on the Specification (“Licensed Implementations”).

2.3. Except as provided below, NVIDIA hereby grants you a royalty-free license under NVIDIA’s Necessary Claims to make, use, sell,
offer to sell, import, and otherwise distribute Licensed Implementations. The term “Necessary Claims” means claims of a patent
or patent application (including continuations, continuations-in-part, or reissues) that are owned or controlled by NVIDIA and
that are necessarily infringed by the Licensed Implementation. A claim is necessarily infringed only when it is not possible to
avoid infringing when implementing the Specification. Notwithstanding the foregoing, “Necessary Claims” do not include any
claims that would require a payment of royalties by NVIDIA to unaffiliated third parties.

3. NO WARRANTIES.

3.1. TO THE MAXIMUM EXTENT PERMITTED BY APPLICABLE LAW, THE SPECIFICATION IS PROVIDED “AS IS”
AND NVIDIA AND ITS SUPPLIERS DISCLAIM ALL WARRANTIES, EITHER EXPRESS OR IMPLIED, INCLUDING,
BUT NOT LIMITED TO, IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSEACCURACY, COMPLETENESS AND NONINFRINGEMENT OF THIRD PARTY RIGHTS.

3.2. TO THE MAXIMUM EXTENT PERMITTED BY APPLICABLE LAW, IN NO EVENT SHALL NVIDIA OR ITS
SUPPLIERS BE LIABLE FOR ANY SPECIAL, INCIDENTAL, INDIRECT, OR CONSEQUENTIAL DAMAGES
WHATSOEVER (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS OF BUSINESS PROFITS, BUSINESS
INTERRUPTION, LOSS OF BUSINESS INFORMATION, OR ANY OTHER PECUNIARY LOSS) ARISING OUT OF
THE USE OF OR INABILITY TO USE THE SPECIFICATION, EVEN IF NVIDIA HAS BEEN ADVISED OF THE
POSSIBILITY OF SUCH DAMAGES.

4. NO SUPPORT.

NVIDIA has no obligation to support or to provide any updates of the SPECIFICATION.

5. FEEDBACK.

In the event Licensee contacts NVIDIA to request Feedback (as defined below) on how to design, implement, or optimize Licensee’s
product for use with the SPECIFICATION, the following terms and conditions apply to the Feedback:

5.1. Exchange of Feedback. Both parties agree that neither party has an obligation to give the other party any suggestions, comments
or other feedback, whether orally or otherwise (“Feedback”), relating to (i) the SPECIFICATION; (ii) Licensee’s products; (iii)
Licensee’s use of the SPECIFICATION; or (iv) optimization of Licensee’s product with the SPECIFICATION. In the event
either party provides Feedback to the other party, the party receiving the Feedback may use and include any Feedback that the
other party voluntarily provides to improve the (i) SPECIFICATION or other related NVIDIA technologies, respectively for
the benefit of NVIDIA; or (ii) Licensee’s product or other related Licensee technologies, respectively for the benefit of Licensee.
Accordingly, if either party provides Feedback to the other party, both parties agree that the other party and its respective licensees
may freely use, reproduce, license, distribute, and otherwise commercialize the Feedback in the (i) SPECIFICATION or other
related technologies; or (ii) Licensee’s products or other related technologies, respectively, without the payment of any royalties
or fees.
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License Agreement

5.2. Residual Rights. Licensee agrees that NVIDIA shall be free to use any general knowledge, skills and experience, (including,
but not limited to, ideas, concepts, know- how, or techniques) (“Residuals”), contained in the (i) Feedback provided by
Licensee to NVIDIA; (ii) Licensee’s products shared or disclosed to NVIDIA in connection with the Feedback; or (c) Licensee’s
confidential information voluntarily provided to NVIDIA in connection with the Feedback, which are retained in the memories
of NVIDIA’s employees, agents, or contractors who have had access to such (i) Feedback provided by Licensee to NVIDIA;
(ii) Licensee’s products; or (c) Licensee’s confidential information voluntarily provided to NVIDIA, in connection with the
Feedback. Subject to the terms and conditions of this Agreement, NVIDIA’s employees, agents, or contractors shall not be
prevented from using Residuals as part of such employee’s, agent’s or contractor’s general knowledge, skills, experience, talent,
and/or expertise. NVIDIA shall not have any obligation to limit or restrict the assignment of such employees, agents or
contractors or to pay royalties for any work resulting from the use of Residuals. FEEDBACK FROM EITHER PARTY
IS PROVIDED FOR THE OTHER PARTY’S USE “AS IS” AND BOTH PARTIES DISCLAIM ALL WARRANTIES,
EXPRESS, IMPLIED AND STATUTORY INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. BOTH PARTIES DO NOT REPRESENT
OR WARRANT THAT THE FEEDBACK WILL MEET THE OTHER PARTY’S REQUIREMENTS OR THAT THE
OPERATION OR IMPLEMENTATION OF THE FEEDBACK WILL BE UNINTERRUPTED OR ERROR-FREE.

6. NO IMPLIED LICENSES.

Under no circumstances should anything in this Agreement be construed as NVIDIA granting by implication, estoppel or otherwise,
(i) a license to any NVIDIA product or technology other than the SPECIFICATION; or (ii) any additional license rights for the
SPECIFICATION other than the licenses expressly granted in this Agreement.

7. THIRD PARTY RIGHTS.

Without limiting the generality of Section 3 above, NVIDIA ASSUMES NO RESPONSIBILITY TO COMPILE, CONFIRM,
UPDATE OR MAKE PUBLIC ANY THIRD PARTY ASSERTIONS OF PATENT OR OTHER INTELLECTUAL PROPERTY
RIGHTS THAT MIGHT NOW OR IN THE FUTURE BE INFRINGED BY AN IMPLEMENTATION OF THE
SPECIFICATION IN ITS CURRENT, OR IN ANY FUTURE FORM. IF ANY SUCH RIGHTS ARE DESCRIBED ON THE
SPECIFICATION, NVIDIA TAKES NO POSITION AS TO THE VALIDITY OR INVALIDITY OF SUCH ASSERTIONS,
OR THAT ALL SUCH ASSERTIONS THAT HAVE OR MAY BE MADE ARE SO LISTED.

8. TERMINATION OF LICENSE.

This LICENSE will automatically terminate if Licensee fails to comply with any of the terms and conditions hereof. In such event,
Licensee must destroy all copies of the SPECIFICATION and all of its component parts.

9. DEFENSIVE SUSPENSION.

If Licensee commences or participates in any legal proceeding against NVIDIA, then NVIDIA may, in its sole discretion, suspend or
terminate all license grants and any other rights provided under this LICENSE during the pendency of such legal proceedings.

10. ATTRIBUTION.

Licensee shall, in a manner reasonably acceptable to NVIDIA prominently embed in all products produced in compliance with the
Specification a notice stating that such product has been so produced.

11. MISCELLANEOUS.

11.1. Notices. All notices required under this Agreement shall be in writing, and shall be deemed effective five days from deposit in
the mails. Notices and correspondence to either party shall be sent to its address as it appears below.

General Counsel, NVIDIA Corporation 2701 San Tomas Expressway
Santa Clara, CA 95050.

11.2. Export regulations. The Specification, or portions thereof, including technical data, may be subject to U.S. export control laws,
including the U.S. Export Administration Act and its associated regulations, and may be subject to export or import regulations
in other countries. Licensee agrees to comply strictly with all such regulations and acknowledges that it has the responsibility
to obtain all export, re-export, import or other licenses in connection with its use of the Specification or any product complying
with the Specification.
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1.1 Introduction — Material building blocks

1 Introduction

NVIDIA Material Definition Language (MDL) is a domain-specific language that describes the appearance
of scene elements for a rendering process. MDL consists of a declarative component to describe materials
as well as a procedural programming language to customize image texture lookups and procedural textures
that provide the parametric input to the material declarations.

MDL is dedicated to providing an abstract material description that is well-defined and independent of
particular rendering systems. The material description is comprehensive and flexible, yet specifically
addresses modern renderers based on the simulation of physically based light transport. The declarative
nature of the material description makes it easy for a renderer to fully understand a material, yet — if
needed — to simplify and approximate the material to the best of the renderer’s capabilities. The procedural
programming language enables the aesthetic flexibility required by artists to design new materials.

Although it emphasizes physically plausible materials, MDL supports also traditional computer graphics
techniques that are important in conventional rendering and modeling workflows, such as normal mapping
and cut-outs.

MDL is designed for modern highly-parallel machine architectures. One important part is the declarative
nature of the material description. Another part is its procedural language, which is restricted to the
definition of pure functions, with access to the rendering state, that are free of side effects and global
dependencies. Material and function evaluations can thus be easily compiled and executed on modern
architectures.

1.1 Material building blocks

A material in MDL consists of a set of building blocks that describe how a renderer should compute the
appearance of a geometrically described surface. A geometric surface is a mathematical idealization having
no thickness that can only serve as a boundary between two volumes. Thus, the geometric definition of a
sphere as a surface can instead be interpreted as the boundary of a spherically shaped volume.

MDL defines how light is affected by this boundary — reflected from the surface, refracted through the
volume the surface defines, or a combination of both. The surface boundary can also define the extent of
a medium through which the light passes and which participates in scattering and absorbing the light.

A geometric surface has no thickness. However, for the purposes of MDL, a surface can also be defined as
having a thickness, though infinitesimally small. In MDL, this is said to be a thin-walled surface. The thin-
walled property permits greater flexibility in defining the appearance of a surface that is not closed, and in
which the surface is not the boundary of an object, but an object in itself. Because both sides of a thin-wall
surface can be rendered, MDL also allows the two sides to possess different appearance properties.

Depending on the thin-walled property, MDL enables three categorically different materials with respect
to how they interpret surfaces:

1. A surface is an interface between volumes. The volumetric properties defined in the material apply
to the enclosed volume.

2. A surface represents a thin wall conceptually enclosing an infinitely thin volume with identical
materials on both sides. Window glass, for example, can be modeled in this way.

3. A surface represents a thin wall with different materials on both sides, in which case both materials
must have equal transmission interactions.
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Material properties in MDL also include geometric properties of surfaces, such as cut-outs, displacements,
or bump maps, which are commonly not modeled in the geometric description.

1.2 Material libraries and re-use of components

MDL has a well-defined module and package concept allowing for a comprehensive organization of
complex material libraries. Together with the namespace concept, this allows for an easy deployment
of material libraries from different providers that will still smoothly interoperate with future in-house
material developments.

MDL modules contain materials and functions with their related types and constants. The re-use of those
elements in MDL is important when building larger material libraries. Functions can be used to encapsulate
other functions and change their signatures by changing their names, parameters, and return types and
hiding details, such as unexposed parameters and their hidden settings. Materials can be used to encapsulate
other materials, providing new names and parameters while, like functions, hiding unnecessary details.

1.3 Related documents

The document NVIDIA Material Definition Language: Technical Introduction illustrates the use of MDL
through a series of images rendered using MDL materials and related code examples [1].
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2.2 Terms and definitions — File paths and resolution in the file system

2 Terms and definitions

2.1 Typographical conventions

The grammar of many language elements is introduced at the beginning of a section using Wirth’s extensions
of Backus Normal Form. The left-hand side of a production is separated from the right hand side by a
colon. Alternatives are separated by a vertical bar. Optional items are enclosed in square brackets. Curly
braces indicate that the enclosed item may be repeated zero or more times.

Non-terminal and meta-symbols are given in italic font. Terminal symbols except identifiers, typenames,
and literals are given in teletype font. See also Section 5 for the lexical structure of MDL.

For example:

struct_type_declaration : struct simple_name [annotation_block ]

{ {struct_field_declarator} } ;

struct_field_declarator : type simple_name [= expression ]

[annotation_block ] ;

2.2 File paths and resolution in the file system

MDL can reference external files with a string literal containing a file path. A string literal (see Section 5.7.5)
used for file paths must not contain control codes (ASCII code < 32), backspace (ASCII code 127), colon
‘:’, and back slash ‘\’. Furthermore, the forward slash ‘/’ is reserved as path separator, explained below,
and cannot be used in file names or directory names.

A file path consists of a file name, optionally preceded by a directory path and a slash ‘/’ as separator. A
directory path consists of a sequence of directory names separated by slashes ‘/’, optionally preceded by a
single slash ‘/’.

An integration of MDL defines an implementation specific sequence of search paths with an implementation
specific order, which shall be consistent for all MDL file compilations. A search path is usually a file system
path of a directory, but can be any directory location of a file-system-like hierarchy, for example, a network
service for MDL modules or a data base. File system paths are used as a synonym for such generalized
directory location in the following description.

Files referenced in MDL are always stored in the directory of a search path or below in subdirectories.
File paths in MDL are not locations in the file system, but only references in relation to the search paths.
The translation of a file path to a file system location is the file resolution, which takes the file path, the
sequence of search paths, and the current working directory into account.

A reference to another file in MDL happens in an MDL module (see Section 15) that lives in its own
directory, the current working directory, whose file system path consists of the current search path followed
by the current module path, where the path separator (slash ‘/’) between the two shall be part of the current
module path.

There are three different kind of file paths. File paths beginning with a slash ‘/’ are called absolute file paths.
File paths beginning with a single dot ‘.’ or two dots ‘..’ as directory name are called strict relative file

paths. All other file paths are called weak relative file paths.
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A single dot ‘.’ as directory name can only be used at the beginning of a file path and only once. Two dots
‘..’ as directory name can only be used at the beginning of a file path. It can be used more than once, but
only as often as there are directories in the current module path, i.e., a sequence of two dots as directory
names cannot be used to refer to any location above or outside the search paths. Other uses of these two
special directory names is an error.

The file resolution works in three steps:

1. Normalize the file path to form a canonical file path.

2. Translate the canonical path into a file system location for an existing file using the search paths.

3. Check error conditions.

Normalization translates file paths into canonical file paths. For absolute file paths the canonical file path
is identical to the file path itself.

Strict relative file paths are normalized as follows. It is an error if the file path does not refer to a file relative
to the current working directory and the file resolution reports that the file cannot be found. Without
this error, the canonical file path is obtained by prepending the file path with the current module path.
Special directories are normalized in the usual ways: a directory name of a single dot ‘.’ is dropped, and a
directory name of two dots ‘..’ is dropped together with the matching regular directory name to its left.

Weak relative file paths are normalized as follows. If the file path does not refer to a file relative to the
current working directory, the canonical file path is obtained by prepending the weak relative file path
with a slash ‘/’. Otherwise, the file path is prepended with the current module path.

The canonical file path is translated into a file system location by iterating through the sequence of search
paths in their respective order until the file is found relative to the search path. If the file could not be
located in any of the search paths, it is reported as not found.

The following additional error checks safeguard MDL file references against possibly surprising behavior,
namely that relative paths might refer to files in different search paths and not to a file, for example, in
the same directory. This behavior is a consequence of the desirable property that a module in MDL is
uniquely identified by its absolute file path, and therefore also all identifiers by their fully qualified name.

Check 1: Given a strict relative file path, it is an error if the file resolution finds actually a file in a different
search path than the current search path. This condition describes a situation where the search path of the
current module has a suitable file, but there exists a file of the same name and path in a higher prioritized
search path and will thus take precedence; it shadows the file in the current search path.

Check 2: Given an absolute or weak relative file path, it is an error if the canonical path references relative
to the current search path an existing file in the current working directory and the file resolution finds
actually a different file. This is similar to Check 1, but further restricted to only consider references to files
in the same directory as the current module.

The file resolution is complete after it passed these two checks without error.

This file resolution algorithm supersedes the one in MDL versions prior to MDL 1.3 irrespectively of the
MDL versions in the involved MDL files. Note that this algorithm is less restrictive than the previous one;
files that had been resolved before are resolved to the same files with this new algorithm.
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The following table lists example file paths and their respective file resolution results assuming the following
example file structure with two search paths in the order as shown and assuming that the current module
is the test.mdl module:

/search_path_1/a/x.mdl // (1): file resolution finds this one first

/a/b/y.mdl // (2): file resolution finds this one first

/a/b/w.mdl // (3): not shadowing

/search_path_2/a/x.mdl // (4): shadowed by module (1)

/a/b/y.mdl // (5): shadowed by module (2)

/a/b/z.mdl // (6): not shadowed

/a/b/test.mdl // current module

File path File resolution Comment
a/x.mdl /search_path_1/a/x.mdl file (1)

/a/x.mdl /search_path_1/a/x.mdl file (1)
../x.mdl <not found> file (4) shadowed by (1)

y.mdl <not found> file (5) in the same directory shadowed by (2)
a/b/y.mdl <not found> file (5) in the same directory shadowed by (2)

/a/b/y.mdl <not found> file (5) in the same directory shadowed by (2)
./y.mdl <not found> file (5) shadowed by (2)

z.mdl /search_path_2/a/b/z.mdl file (6)
a/b/z.mdl /search_path_2/a/b/z.mdl file (6)

/a/b/z.mdl /search_path_2/a/b/z.mdl file (6)
./z.mdl /search_path_2/a/b/z.mdl file (6)

w.mdl <not found> file exists neither locally nor absolute
a/b/w.mdl /search_path_1/a/b/w.mdl file (3)

/a/b/w.mdl /search_path_1/a/b/w.mdl file (3)
./w.mdl <not found> file exists not locally

Note 1: Relative file paths in an error-free MDL program can always be rewritten into an equivalent
absolute file path referring to same file.

Note 2: If a file path exists twice, each in a different search path, only the file in the first search path can
be referenced in an error-free MDL program. This results in the desirable property of MDL that fully
qualified names uniquely identify elements in the language independent of any context.

Note 3: Errors resulting from Check 1 can be fixed using absolute or weak relative file paths. Errors from
Check 2 are considered broken installations and need to be fixed in the installation. The rationale behind
this is the assumption that packages in MDL are more tightly coupled units where modules in the same
package are co-developed if they reference each other. An installation that places a duplicate of one file but
not the other in a higher prioritized path is likely to break this assumption, e.g., a different incompatible
version.

Note 4: MDL module names and package names have a correspondence to file names and directory
names explained in Section 15. Consequently, those file and directory names are restricted to legal MDL
identifiers as defined in Section 5.5.
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Note 5: The use of the following characters in a file path can hinder cross platform portability of files:
double quote ‘"’, star ‘*’, less than ‘<’ , greater than ‘>’, question mark ‘?’, and pipe ‘|’.

2.3 Texture files

A texture file can be referenced in MDL using a file path, as explained in Section 2.2. The file name shall
end in one of the following file extensions, separated by a dot ‘.’ from the base name, and the file shall be
in the corresponding format:

Extension File format
png ISO/IEC 15948:2004 - Information technology — Computer graphics and image

processing — Portable Network Graphics (PNG): Functional specification. Also as
RFC 2083, PNG (Portable Network Graphics) Specification, Version 1.0, (March 1997).

exr OpenEXR http://www.openexr.com/

jpg

jpeg

ISO/IEC 10918-1:1994, Digital Compression and Coding of Continuous-Tone Still
Images. ISO/IEC CD 10918-5, Information technology – Digital compression and
coding of continuous-tone still images: JPEG File Interchange Format (JFIF).

ptx PTEX http://ptex.us/

A texture file path in MDL can include one of the following uv-tileset markers in the filename. The
texture reference refers then to a whole uv-tileset, a set of texture files used together as a single large two-
dimensional texture. The different markers indicate the different filename conventions that encode where
each texture file is placed in the uv texture space.

Marker Pattern (0,0)-index Convention to format a (u, v)-index
<UDIM> DDDD 1001 UDIM, expands to the four digit number 1000+(u+1+v∗10)

<UVTILE0> "_u"I"_v"I _u0_v0 0-based uv-tileset, expands to "_u"u"_v"v

<UVTILE1> "_u"I"_v"I _u1_v1 1-based uv-tileset, expands to "_u"(u + 1)"_v"(v + 1)

A uv-tileset marker is replaced by its corresponding regular expression pattern from the table above to
match all files that belong to this uv-tileset. The pattern uses the following abbreviations: "text" expands
to the literal text, D expands to one of the digits [0-9], and I expands to an integer number with an optional
minus sign and optional leading zeros, i.e., [-]?[0-9]+.

The UDIM convention supports only non-negative indices and u needs to be less than ten. The 0-based
and 1-based uv-tileset conventions do not restrict the value range of the indices. Optional leading zeros
may cause multiple files to map to the same (u, v) index, which shall be reported as an error.

The following table shows example texture file paths and matching file names for the different conventions.

Example file path Matching names for (u, v) index (0, 0) and (1, 0)

example<UDIM>.png example1001.png example1002.png

example<UVTILE0>.png example_u0_v0.png example_u01_v00.png

example<UVTILE1>.png example_u1_v1.png example_u2_v01.png

Note: MDL integrations can support more texture file formats in the scene description and pass those
textures into function or material parameters of suitable texture types.
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2.4 Light profile files

A light profile file can be referenced in MDL using a file path, as explained in Section 2.2. The file name
shall end in one of the following file extensions, separated by a dot ‘.’ from the base name, and the file
shall be in the corresponding format:

Extension File format
ies IES LM-63-02 Standard File Format for Electronic Transfer of Photometric Data and

Related Information, Illuminating Engineering Society.

Note: MDL integrations can support more light profile file formats in the scene description and pass those
into function or material parameters of a light profile type.

2.5 BSDF measurement data files

A bidirectional scattering distribution function (BSDF) measurement data file can be referenced in MDL
using a file path, as explained in Section 2.2. The file name shall end in one of the following file extensions,
separated by a dot ‘.’ from the base name, and the file shall be in the corresponding format:

Extension File format
mbsdf MBSDF file format documented in Appendix B, Section 23.

Note: MDL integrations can support more BSDF measurement data file formats in the scene description
and pass those into function or material parameters of a BSDF measurement type.

2.6 Quantities and units

Light transport simulation is performed in radiometric units. Material or function parameters may accept
values in photometric units, but these values will eventually be converted to radiometric units before
interacting with the renderer.

One of the most fundamental quantities in light transport is radiance leaving from (exitant) or arriving at
(incident) a point x in direction ω. It is usually denoted by

L(x, ω)

[

W

m2sr

]

and measured in watts per square meter per steradian. Note that exitant radiance usually differs strongly
from incident radiance, because the former includes interaction of light with the local surface, while the
latter does not.

Spectral rendering uses spectral radiance in
[

W · m−2 · sr−1 · nm−1
]

, which additionally depends on the
wavelength in nanometers. The same applies to all following quantities. Radiance is obtained from
spectral radiance by integrating over an interval of wavelengths. The integrand is commonly weighted by
some kind of spectral response function.

The following sections follow conventional notation and omit the explicit reference to wavelength
dependence for brevity.
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Integrating incoming radiance Li over a set of unit directions Ω ⊆ S2 around a point leads to irradiance

E(x) =

∫

Ω

Li(x,−ω)dσ̄(ω)

[

W

m2

]

,

where θ is the angle between the normal and ω, and

dσ̄(ω) =

{

dσ(ω) in the volume,

dσ⊥(ω) = |cos θ| dσ(ω) on the surface.

The measure dσ̄ is simply a short-hand for the solid angle measure in the volume and the projected solid
angle measure on the surface.

The similar integral of exitant radiance Lo, the radiance leaving a surface, is referred to as radiant exitance

M(x). This quantity is especially useful when describing light sources.

Finally, integrating irradiance (or radiant exitance) over surface area results in power

Φ =

∫

A
E(x)dx [W] .

The unit used for distances depends on the context and can be meters, world space scene units, or implicit
through some coordinate space transformation. Distances for the volume absorption coefficient and
the volume scattering coefficient of the MDL material model in Section 13.3 are in meters in world
space. The radius of the rounded corner state function in Section 19.3 is in meters in world space.
Distances in internal space or object space can be transformed into scene units in world space using
the coordinate space transformations in Section 19.2. Scene units can be multiplied with the result of
the ::state::meters_per_scene_unit() state function in Section 19.2 to convert them to meters. The
::state::scene_units_per_meter() state function returns the reciprocal value.

Angles are specified in radians in the range from 0 to 2π, for example, as arguments to the trigonometric
standard library functions. Rotations are specified in the range from 0 to 1, where 1 means a full rotation
by an angle of 2π.

Note: Rotations can be used as function or material parameters that can be conveniently textured. This
specification document makes currently no use of rotations.
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3 Runtime model

MDL modules offer functions and materials for runtime execution. Both can have parameters that are
provided with values at runtime. Besides parameters, state functions are used to communicate rendering
state to the functions and materials defined in MDL.

3.1 Functions

Functions in MDL are conventional functions with input parameters and a return value. In addition,
functions have read-only access to a runtime state through state functions. The runtime state provides
standardized access to important values of the rendering context, such as the current position or texture
coordinates.

An application integrating MDL can call functions at runtime with concrete arguments for the parameters
and a runtime state. The function computes a return value to be used by the application.

More specifically, functions in MDL are pure in the sense of being side-effect free and are state-less in the
sense that they always compute the same return value for the same argument values and runtime state.

Functions can be overloaded, in which the same name is used for more than one function, but where the
functions differ in their parameter lists. Overload call resolution is explained in Section 12.4.

A relevant aspect of the MDL type system for the runtime integration is the handling of size-deferred
arrays (see Section 7). Depending on the capabilities of the MDL integration, size-deferred arrays may
not exist at runtime and overloaded functions are provided instead for each concrete array size used. This
may imply that calling a function with a size-deferred array parameter requires a re-compilation of this
function for the specific array size in the call. Calling the function again with a different array value, but
of equal array size, should not require a re-compilation. Otherwise, the MDL design does not imply that
a re-compilation would be necessary for other parameter types.

3.2 Materials

Materials in MDL consist of predefined building blocks with parameters that can be combined in flexible
ways. The building blocks, their parameters and combinations are explained in the material model section
(see Section 13).

The material building blocks have input parameters. These parameters can be set to literal values and the
return value of function calls, including state function calls. The parameters to the function calls themselves
can also be set to these types of values.

A material is instantiated when its input parameters are bound to specific values. This happens typically
when a material is assigned to an object in the scene description. At instantiation, material input parameters
can be set to literal values or the return value of function calls, including state function calls.

An application integrating MDL can instantiate materials and inspect material instances. Material
inspection allows the application to understand the complete structure of how the material building
blocks are combined and how all parameters of these building blocks are set. If a parameter is set to the
return value of a function call, the application can retrieve the arguments provided to that function and
call the function with the proper runtime state. The runtime state depends on the material building block
where the function call result is needed.

Although material definitions cannot be overloaded in MDL, an MDL integration may choose to replace a
material with parameters of size-deferred array types by a set of materials with concrete array sizes similar
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to how it may handle functions with size-deferred array parameter types.

3.3 Distance unit conversion between scene and MDL

Distances in MDL may expect their value in meters, world space scene units, or others defined by
transformations. In particular the integration of scene units into MDL requires the runtime to know the
ratio between a scene unit and a meter, for example, from an applications setting or a rendering option in
the scene.
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4 Overview

mdl : mdl_version

{ import}

[ module annotation_block ; ]

{[export ] global_declaration}

mdl_version : mdl floating_literal ;

import : import qualified_import {, qualified_import} ;

| [export ] using import_path

import ( * | simple_name {, simple_name} ) ;

qualified_import : import_path [:: * ]

qualified_name : [:: ] simple_name {:: simple_name}

simple_name : IDENT

global_declaration : annotation_declaration

| constant_declaration

| type_declaration

| function_declaration

A compilation unit in Material Definition Language (MDL) is a module. A module consists of a mandatory
MDL version declaration, a sequence of import declarations, and optional annotations block, and a
sequence of global declarations. Imported elements as well as those from the global declarations can be
exported to be used outside of the module itself in other modules or by a renderer.

4.1 MDL version declaration

Each MDL module starts with an MDL version declaration, only preceded by optional white space or
comments. The version declaration identifies the module as written in the corresponding MDL version.
The version itself consists of the major version number followed by a dot and the minor version number.

The following example illustrates how an MDL module can start that follows the version of this
specification document:

mdl 1.4;

4.2 Import declarations

In MDL, all identifiers and all typenames live in modules with the exception of the types available as built-
in reserved words. A module defines a namespace and shields identifiers from naming conflicts. Modules
can be used as such or they can be organized in packages, which define a namespace as well and nest the
module namespace or sub-package namespace within their own. Modules and packages are explained in
detail in Section 15.

Declarations inside a module need to be marked for export before they can be used outside of the module,
and other modules need to import those declarations before they can be used.
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Import declarations can import individual declarations or all declarations from other modules. Depending
on the particular form of the import declarations used, the imported declarations can only be referred to
by their qualified identifiers or by their unqualified identifiers. A qualified identifier includes the module
and package names as namespace prefixes separated by the scope operator ‘::’. See Section 15.1 for the
details of import declarations.

Modules implemented using different versions of MDL can be freely mixed with one restriction:
Declarations that are not legal in a modules version of MDL cannot be imported from another module
even though the declaration would be legal in that modules version of MDL. In other words, a module
can only see declarations of other modules that are legal in its version of MDL. Details are explained in
Section 15.4.

MDL’s import mechanism does not offer any name-conflict resolution mechanisms, i.e., an identifier or
type can only be imported in the unqualified form from one module. The purpose of this policy is to
have a well-defined module system that enables packaging and re-use of material libraries by independent
providers.

4.3 Global declarations

Global declarations can be any of:

• global constants, see Section 6.6,

• type declarations in the form of structure type declarations, see Section 8, enumeration type
declarations, see Section 9, or typedef declarations, see Section 10,

• function declarations, Section 12,

• material definitions, Section 13, that are syntactically similar to function declarations and represented
this way in the grammar, and

• annotation declarations, see Section 14.

Note: MDL does not have global variables (besides global constants) nor global material instances. The
instancing of materials with concrete parameter values is left to the integration with the renderer or scene
graph representation.
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5 Lexical structure

This section describes the lexical structure of MDL.

5.1 Character set

An MDL source file is a sequence of characters from a character set. This set comprises at least the
following characters:

1. the 52 uppercase and lowercase alphabetic characters:

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

a b c d e f g h i j k l m n o p q r s t u v w x y z

2. the 10 decimal digits:

0 1 2 3 4 5 6 7 8 9

3. the blank or space character

4. the 32 graphic characters:

Character Name Character Name
! exclamation point " double quote
# number sign $ dollar sign
% percent & ampersand
’ single quote ( left parenthesis
) right parenthesis * asterisk
+ plus , comma
- hyphen or minus . period
/ slash : colon
; semicolon < less than
= equal > greater than
? question mark @ at symbol
[ left bracket \ backslash
] right bracket ^ circumflex
_ underscore ‘ backquote
{ left brace | vertical bar
} right brace ~ tilde

There must also be some way of dividing the source program into lines, typically a newline character or a
sequence of newline and carriage return characters. Line endings are significant in delimiting preprocessor
directives and one type of comments (see below).

The blank (space) character, tabulators, line endings, and comments (see below) are collective known as
whitespace. Beyond separating tokens (see below) and the significance of line endings in preprocessor
directives, whitespace is ignored.
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5.2 Comments

There are two kinds of comments:

• A comment introduced by // extends to the end of the line.

• A comment introduced by /* extends to the first occurrence of */.

Occurrence of // or /* inside a string literal (see below) does not introduce a comment.

5.3 Tokens

The characters making up an MDL program are collected into lexical tokens according to the rules presented
in the following sections. There are six classes of tokens: operators, separators, identifiers, typenames,
reserved words, and literals.

The compiler always uses the longest possible sequence of characters when reading from left to right to
form a token, even if that does not result in a legal MDL program. For example, the sequence of characters
“a--b” is interpreted as the tokens “a”, “--”, and “b”, which is not a legal MDL expression, even though
the sequence of tokens “a”, “-”, “-”, “b” might constitute a legal expression.

5.4 Operators and separators

These are the operators of MDL grouped by precedence, from highest to lowest:
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Operation Name Operator Expression
scope resolution identifier::identifier

scope resolution identifier::typename

global scope resolution ::qualified_name

global scope resolution ::qualified_type

member selection expression.identifier

subscripting expression[expression]

function call qualified_name(expression)

value construction qualified_type(expression)

postfix increment lvalue++

postfix decrement lvalue--

prefix increment ++lvalue

prefix decrement --lvalue

logical not !expression

unary minus -expression

unary plus +expression

bitwise complement ~expression

multiply expression * expression

divide expression / expression

modulo expression % expression

add expression + expression

subtract expression - expression

left-shift expression << expression

signed right-shift expression >> expression

unsigned right-shift expression >>> expression

less than expression < expression

less than or equal expression <= expression

greater than expression > expression

greater than or equal expression >= expression

equal expression == expression

not equal expression != expression

bitwise and expression & expression

bitwise xor expression ^ expression

bitwise or expression | expression

logical and expression && expression

logical or expression || expression

conditional expression expression ? expression : expression

simple assignment lvalue = expression

multiply and assign lvalue *= expression

divide and assign lvalue /= expression

modulo and assign lvalue %= expression

add and assign lvalue += expression

subtract and assign lvalue -= expression

left-shift and assign lvalue <<= expression

signed right-shift and assign lvalue >>= expression

unsigned right-shift and assign lvalue >>>= expression

bitwise and and assign lvalue &= expression

bitwise xor and assign lvalue ^= expression

bitwise or and assign lvalue |= expression

sequencing expression , expression
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Unary operators and assignment operators are right-associative; all others are left-associative.

The separators of MDL are “{”, “}”, “:”, and “;”.

5.5 Identifiers and typenames

An identifier is an alphabetic character followed by a possibly empty sequence of alphabetic characters,
decimal digits, and underscores, that is neither a typename nor a reserved word (see below). Declarations
in the MDL syntax expect an identifier that may actually be a typename in case the declaration shadows
this typename, such as a typename from a different scope.

A typename has the same lexical structure as an identifier, but is the name of a built-in type, a material
name, a BSDF, EDF or VDF class name, or a type defined by the user with a structure, enumeration, or
typedef declaration.

5.6 Reserved words

These are the reserved words of MDL that can only be used in the way defined in this document:

annotation

bool

bool2

bool3

bool4

break

bsdf

bsdf_measurement

case

cast

color

const

continue

default

do

double

double2

double2x2

double2x3

double3

double3x2

double3x3

double3x4

double4

double4x3

double4x4

double4x2

double2x4

edf

else

enum

export

false

float

float2

float2x2

float2x3

float3

float3x2

float3x3

float3x4

float4

float4x3

float4x4

float4x2

float2x4

for

hair_bsdf

if

import

in

int

int2

int3

int4

intensity_mode

intensity_power

intensity_radiant_exitance

let

light_profile

material

material_emission

material_geometry

material_surface

material_volume

mdl

module

package

return

string

struct

switch

texture_2d

texture_3d

texture_cube

texture_ptex

true

typedef

uniform

using

varying

vdf

while

These are additional words of MDL that are reserved for future use or to avoid misleading use. Using
them results in an error.

auto

catch

char

class

const_cast

delete

dynamic_cast

explicit

extern

external

foreach

friend

goto

graph

half

half2

half2x2

half2x3

half3

half3x2

half3x3

half3x4

half4

half4x3

half4x4

half4x2

half2x4

inline

inout

lambda

long

mutable

namespace

native

new

operator

out

phenomenon

private

protected

public

reinterpret_cast

sampler

shader

short

signed

sizeof

static

static_cast

technique

template

this

throw

try

typeid

typename

union

unsigned

virtual

void

volatile

wchar_t
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5.7 Lexical structure — Literals

5.7 Literals

literal_expression : boolean_literal

| enum_literal

| integer_literal

| floating_literal

| string_literal {string_literal}

boolean_literal : true | false

enum_literal : intensity_radiant_exitance | intensity_power

integer_literal : INTEGER_LITERAL

floating_literal : FLOATING_LITERAL

string_literal : STRING_LITERAL

Literals are a means to directly denote values of simple types.

5.7.1 Boolean literals

The Boolean literals are true and false.

5.7.2 Enumeration literals

Two enumeration literals, intensity_radiant_exitance and intensity_power, are reserved words. They
are literals of the enumeration type intensity_mode.

5.7.3 Integer literals

Integer literals can be given in octal, decimal, or hexadecimal base.

A decimal literal is a non-empty sequence of decimal digits.

An octal literal is the digit zero followed by a non-empty sequence of octal digits (the digits from zero to
seven inclusive).

A hexadecimal literal is the digit zero, followed by the character x or X, followed by a non-empty sequence
of the hexadecimal digits, defined as the decimal digits and the letters a, b, c, d, e, f, A, B, C, D, E, and F.

5.7.4 Floating-point literals

A floating point literal is a possibly empty sequence of decimal digits, optionally followed by a decimal
point (the character period) and a possibly empty sequence of decimal digits, optionally followed by an
exponent given by the letter e or E, an optional sign (- or +) and a non-empty sequence of decimal digits,
optionally followed by a type suffix. Either the decimal point or the exponent need to be present. There
has to be at least one digit preceding or following the decimal point. The type suffix can be the letter f, F,
d, or D.
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A floating-point literal without type suffix or with type suffix f or F is of type float. A floating-point
literal with type suffix d or D is of type double. Floating-point types are described in Section 6.7 on page 25.

A floating-point literal of type float is able to hold a value of type double, which is used in case the literal
is converted to a double value.

5.7.5 String literals

A string literal is a possibly empty sequence of UTF-8 encoded characters [2] not including a double quote
or control sequences, enclosed in double quotes. A string literal may not include a line ending. A string
literal may be further restricted to 7-bit ASCII encoding or a fixed set of choices depending on context.
String literals can be concatenated by juxtaposition.

Permitted escape sequences are a backslash followed by one of the following escape codes:

Escape Sequence Description Representation
\’ single quote byte 0x27

\" double quote byte 0x22

\\ backslash byte 0x5c

\a alert (e.g., bell) byte 0x07

\b backspace byte 0x08

\f form feed byte 0x0c

\n new line byte 0x0a

\r carriage return byte 0x0d

\t horizontal tab byte 0x09

\v vertical tab byte 0x0b

\nnn arbitrary octal value byte nnn

\xnn arbitrary hexadecimal value byte nn

\unnnn arbitrary Unicode value code point U+nnn

\Unnnnnnnn arbitrary Unicode value code point U+nnnnnnnn
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6 Variables and data types

6 Variables and data types

type : [frequency_qualifier ] array_type

array_type : simple_type [[ [conditional_expression | < simple_name > ] ] ]

simple_type : [:: ] relative_type

relative_type : bool | bool2 | bool3 | bool4

| int | int2 | int3 | int4

| float | float2 | float3 | float4

| float2x2 | float2x3 | float2x4

| float3x2 | float3x3 | float3x4

| float4x2 | float4x3 | float4x4

| double | double2 | double3 | double4

| double2x2 | double2x3 | double2x4

| double3x2 | double3x3 | double3x4

| double4x2 | double4x3 | double4x4

| color | string | bsdf | edf | vdf | hair_bsdf

| light_profile | bsdf_measurement

| material | material_emission | material_geometry

| material_surface | material_volume | intensity_mode

| texture_2d | texture_3d | texture_cube | texture_ptex

| IDENT [:: relative_type ]

frequency_qualifier : varying | uniform

MDL defines a collection of built-in data types tailored for the kind of tasks materials need to accomplish.
In addition, these types can be used to define custom structures as described on page 44 unless noted
otherwise in the description of the individual data types.

Below is a list of built-in MDL data types with a brief description of each type:

• float, double – A single real number.

• int – An integer, including positive and negative numbers as well as zero.

• bool – A Boolean value that is either true or false.

• float2, float3, float4, double2, double3, double4 – Vectors with real number elements.

• int2, int3, int4 – Integer vectors.

• bool2, bool3, bool4 – Boolean vectors.

• float2x2, float2x3, float3x2, float3x3, float4x3, float3x4, float2x4, float4x2, float4x4,
double2x2, double2x3, double3x2, double3x3, double4x3, double3x4, double2x4, double4x2,
double4x4 – Matrices of various dimensions.

• texture_2d, texture_3d, texture_cube, texture_ptex – Texture map samplers.

• color – An implementation independent representation of color.

• string – A character string.
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6.2 Variables and data types — Variables

• light_profile – A description of light emittance for real world lights; used for parameters of
emission descriptions only.

• bsdf_measurement – A description of a measured bidirectional scattering distribution function
(BSDF) that can be used with the corresponding elemental distribution function to render the
measurement.

• bsdf, edf, vdf, hair_bsdf – Reference types for a BSDF, EDF, VDF, or hair BSDF respectively; used
for parameters of materials only.

• material, material_geometry, material_surface, material_emission, material_volume – Struct-
like types describing a material and its components.

• intensity_mode – An enumeration type used for one of the fields in the material_emission type to
define the units used to control the emission intensity of lights.

Atomic types are keywords in MDL.

6.1 Constructors

A value of an MDL data type can be constructed by calling the type’s constructor. The constructor syntax
consists of the type name, followed by a comma separated list of arguments contained in parenthesis. For
example, the following expression evaluates to a value of type float3:

float3(0.3, 0.1, 0.7)

Constructor calls are analogous to function calls. They allow, in addition to the above argument passing by
position a style where arguments are passed by name. In this case, each argument consists of the parameter
name separated from the initializing expression by a colon. The exact rules for argument passing are
explained in Section 12.1. For example, the following expression evaluates to the same value of type
float3 as the previous example:

float3(x: 0.3, y: 0.1, z: 0.7)

Types can have several overloaded constructors. Two kinds of constructors exist for all types: the default
constructor and the copy constructor. The default constructor takes no parameter. It is used to initialize
values if no other initializer is provided. The copy constructor takes a parameter of identical type. It is
used when a value is copied.

Constructors are defined specifically for each type in MDL; there are no user-defined constructors in
MDL. The individual constructors are documented in the following sections for each corresponding type.

6.2 Variables

variable_declaration : type variable_declarator

{, variable_declarator} ;

variable_declarator : simple_name [argument_list | = assignment_expression ]

[annotation_block ]
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6.3 Variables and data types — Uniform and varying values and types

A type followed by an identifier and semicolon declares a variable of that name and type in MDL. Multiple
variables of the same type can be declared by separating them with commas.

Variables can be used in MDL for local variables in functions (Section 12) and as temporary values in
let-expressions (Section 13.8).

When declaring a variable the type’s constructor can be invoked by appending the constructor parameters,
enclosed in parenthesis, to the variable name in the declaration. If a variable declaration contains an
initializer, it will be treated as if the variable was constructed taking the right-hand side of the assignment
statement as the constructor’s parameter.

For example, the following three cases are identical, which is to invoke the float-type constructor with
the literal value 0.0 as a parameter and initialize the variable with the resulting value:

float x(0.0);

float y = float(0.0);

float z = 0.0;

Variables and parameters do not have to be initialized with an explicit constructor or initializer. In that
case, the type’s default constructor will be used to initialize the value. Note: In MDL, values are always
initialized.

In the following sections, detailed descriptions of each type identify the overloaded constructor versions
supported by that type.

6.3 Uniform and varying values and types

A value of an MDL data type can be uniform or varying. A common source for varying values are varying
state functions, see Section 19, or varying function or material parameters, see Section 12.2 and 13.5.

Being uniform or varying is a type property and can be declared with the uniform and varying type
modifiers, respectively. A variable of a uniform type can only be set to a uniform value. A variable of a
varying type can be set to a varying value as well as to a uniform value. The resulting value in the variable
is then always considered varying.

For example:

uniform float x = 0.0; // x is a uniform value

varying float y = x; // y is a varying value

A type without a uniform or varying type modifier is auto-typed, that is, its uniform or varying property
is determined by the actual use of the type. For variable declaration, the considered use of the variable
includes all its occurrences; if any occurrence of the variable requires the variable to be varying then the
type of the variable will be considered varying. This implies that possible uses of the variable where it
would be required to be uniform are considered errors in the program.

For example:
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float3 x = 0.0; // auto-typed

uniform float3 y = x; // ! error, because varying x cannot be assigned to uniform

x = state::normal(); // x becomes varying by assigning the varying state::normal

6.4 Operators

expression : assignment_expression {, assignment_expression}

assignment_expression : logical_or_expression

[? expression : assignment_expression

| assignment_operator assignment_expression

]

assignment_operator : = | *= | /= | %= | += | -= | <<= | >>= | >>>= | &= | ^= | |=

conditional_expression : logical_or_expression [? expression : assignment_expression ]

logical_or_expression : logical_and_expression {|| logical_and_expression}

logical_and_expression : inclusive_or_expression {&& inclusive_or_expression}

inclusive_or_expression : exclusive_or_expression {| exclusive_or_expression}

exclusive_or_expression : and_expression {^ and_expression}

and_expression : equality_expression {& equality_expression}

equality_expression : relational_expression {( == | != ) relational_expression}

relational_expression : shift_expression {( < | <= | >= | > ) shift_expression}

shift_expression : additive_expression {( << | >> | >>> ) additive_expression}

additive_expression : multiplicative_expression {( + | - ) multiplicative_expression}

multiplicative_expression : unary_expression {( * | / | % ) unary_expression}

unary_expression : postfix_expression

| ( ~ | ! | + | - | ++ | -- ) unary_expression

| let_expression

let_expression : let

( variable_declaration

| { variable_declaration {variable_declaration} }

)

in unary_expression
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postfix_expression : primary_expression

{++

| --

| . simple_name

| argument_list

| [ expression ]

}

primary_expression : literal_expression

| simple_type [[ ] ]

| ( expression )

| cast < array_type > ( unary_expression )

expression_statement : [expression ] ;

Most MDL types support the arithmetic, assignment, and comparison operators listed in Section 5.4.

Operators are defined in global scope. Operators may have overloaded version for different built-in types
of operands. Additional programmer-defined overloads are not allowed.

Some MDL types have member variables, which are accessed by placing a period character ‘.’ after the
type value followed by the name of the member. For example v.x accesses the x member of v.

The comma operator and ternary conditional operator (represented by the ‘?’ character) are also supported
for use in expressions. The comma operator evaluates to the value of the right-most expression in the
comma-separated list of expressions and shares its type. The ‘?’ operator evaluates to the value of the
second or third operands depending on the result of the first operand, which must be of type bool. If
the first operand is true the result is the second operand otherwise it is the third operand. The second
and third operand must have the same type, which defines the type of the expression. Whether only the
second or the third operand that is selected by the ‘?’ operator is evaluated or whether both are evaluated
is implementation dependent. Expressions in these operands should therefore be restricted to have no side
effects.

The return value of the type-cast operator expression cast<t>(v) is equal to v if the type t is equal to the
type of the parameter value v with any uniform or varying type modifier removed.

Additionally, the type-cast operator is applicable where the type t differs from the type of the parameter
value v in in certain cases of array types (Section 7.4), user defined structure types (Section 8.2), or
enumeration types (Section 9.1). In all other cases, the use of the type-cast operator is an error.

The type of the result value is always equal to t with the uniform or varying modifier set to the modifier
of the parameter value v, if if has any.

In the following sections, detailed descriptions of each type identify the operators supported by that type.

6.5 Constant expressions

MDL makes use of constant expressions in some places. The type of a constant expression is one of:
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• One of the following types:

bool int float double color string

bool2 bool3 bool4 int2 int3 int4

float2 float3 float4 double2 double3 double4

float2x2 float2x3 float2x4 float3x2 float3x3 float3x4

float4x2 float4x3 float4x4 double2x2 double2x3 double2x4

double3x2 double3x3 double3x4 double4x2 double4x3 double4x4

• An array type with a base type that is a legal type for a constant expression.

• A user-defined struct type where all fields have a type that is a legal type for a constant expression.

• A user defined enumeration.

A constant expression may consist of:

• bool, int, float, double and string literals (see Section 5.7).

• Constructors for base types, vectors, matrices, colors, and strings.

• Constructors for user defined structs with constant expressions as arguments and where all parameters
without arguments have constant expression default initializer.

• Enumeration values.

• Indexing with constant expressions into constant expressions of array type.

• Selection of struct fields from constant expressions of struct type.

• The built-in operators “&&”, “||”, “&”, “|”, “^”, “<”, “<=”, “==”, “!=”, “>=”, “>”, “<<”, “>>”, “>>>”,
“+”, “-”, “*”, “/”, “%”, “!”, “~”, “.”, or “[]”. A division by zero is an error.

• Call of a standard math function (see Section 20.2) where all arguments are constant expressions.

6.6 Global constants

constant_declaration : const array_type constant_declarator {, constant_declarator} ;

constant_declarator : simple_name ( argument_list | = conditional_expression )

[annotation_block ]

Constants can be declared globally using a variable declaration preceded by the const keyword. The
uniform or varying type modifiers are not allowed on the variable type. The initialization is restricted to
a constant expression. For example:

const float example_constant = 2 * 3.14159;
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6.7 Scalars – float, double, int and bool

A floator double represents an approximation of a mathematical “real” number. MDL does not define the
amount of precision nor the smallest or largest values representable by these types however it is guaranteed
that double will have at least as much precision as float. The float and double types all represent a
numeric value, but also provide a hint to the compiler to indicate variables that may require more or less
precision.

Different platforms may choose to use different representations including floating or fixed point. Some
platforms may use relatively low precision floating point for performance reasons.

An int represents an integer number. MDL requires that int has at least 16 bits available for bitwise
operators. Besides that, MDL does not define the underlying representation of int values nor does it
define the smallest or largest possible values that can be represented.

A bool represents a single Boolean value with possible values true and false.

6.7.1 Constructors

A scalar can be zero initialized with the default constructor, or set to false in the case of the bool type. A
scalar can be initialized from any other scalar value even if the result entails a loss of precision.

In the following, all constructors are explained in detail, while implicit conversions, which apply in addition,
are documented in Section 6.7.2.

float()

double()

int()

The default constructor creates a zero-initialized scalar.

bool() The default constructor creates a bool value initialized to false.

float(float value)

float(double value)

double(double value)

A float or double can be constructed from any other scalar value, which may result in a loss of
precision. When floating-point values are converted to floating-point types of less precision,
the value is rounded to one of the two nearest values. It is implementation dependent to which
of the two values it is rounded.

int(int value)

int(float value)

int(double value)

An int can be constructed from any other scalar value, which may result in a loss of precision.
When floating-point values are converted to int, the fractional part is discarded. The resulting
value is undefined if the truncated value cannot be represented as int.

bool(int value)

bool(float value)

bool(double value)

An bool can be constructed from any other scalar value. It is initialized to false for a numeric
value equal to zero, and it is initialized to true for all non-zero numeric values.
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bool(bool value)

An bool can be constructed from another bool value.

For example:

float x(5);

int y(x);

bool z(x);

All three constructor calls above are legal and result in three variables initialized with the following values:

Variable Value
x 5.0

y 5

z true

6.7.2 Conversion

When required by use in an expression, an scalar value will be implicitly converted to another scalar type
provided there is no loss of precision. For example, a float value can be automatically converted to the
double type but an explicit constructor call or initialization is needed to convert a double value to the
float type. Note: With the undefined precision of the scalar types, the conversion from an int value to
the float or the double type may have in fact some loss of precision, but shall be allowed implicitly.

The following table lists the types each scalar type can be automatically converted to:

Type Can be converted to
bool int, float, or double
int float, or double
float double

Note: In addition to these implicit conversion, arithmetic and other operators provide overloads, for
example, to support mixed scalar-vector operations. (See vector operations in Section 6.8.4 or mixed
scalar-matrix operations in Section 6.9.4.)

6.7.3 Operators

The float, double, and int types support the following operators:

= / /= + += -

-= * *= == != <=

< >= > ++ --

The int type additionally supports the modulo and bitwise operators:
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% %= << >> >>> <<= >>= >>>=

~ & ^ | &= ^= |=

The bool type supports the following operators:

= == != &&

! ||
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6.8 Vectors – float, double, int, and bool

MDL provides two, three, and four component vector types with either float, double, int, or bool

component types. Vectors are named by taking the component type name and appending the dimension
of the vector, which can be 2, 3, or 4.

For example:

float3 f3; // a three-dimensional vector of floats

int2 i2; // a two-dimensional vector of ints

bool4 b4; // a four-dimensional vector of bools

6.8.1 Constructors

A vector can be zero initialized with the default constructor. A vector can be initialized from a single
scalar, a series of scalars of the same number as the number of vector components, or a vector of the same
dimension. In addition, a float3 vector can be initialized from a value of type color.

In the following, all constructors are explained in detail with the vector type float3 as a representative for
all vector types, while implicit conversions, which apply in addition, are documented in Section 6.8.2.

float3() The default constructor creates a zero-initialized vector.

float3(float value)

All components of the vector are initialized with the scalar value.

float3(float x, float y, float z)

The components of the vector are initialized with the values of x, y, and z. The fourth parameter
in the case of a float4 vector is named w.

float3(float3 value)

float3(double3 value)

A vector can be constructed from any other vector of equal dimension, which may result in a
loss of precision.

float3(color value)

A vector of type float3 can be constructed from a value of type color. The ’x’, ’y’, and ’z’

components will be assigned the red, green, and blue color component values, respectively, in
the linear sRGB color model. Note that this conversion may have significant runtime costs
depending on the internal color representation of the color type. See Section 6.11 for more
details on the color type.

Note: This constructor does not exist for the other vector types.

Some examples:
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bool b1 = true; // a Boolean value to work with

int i0 = 0, i4 = 4; // some scalar values to work with

float s2 = 2.0, s3 = 3.0; // more scalar values

float4 v4(b1, s2, s3, i4); // 4-float constructor, implicit conversions to float

float3 v3(i0, b1, s2); // 3-float constructor, implicit conversion of i0

bool3 vb3(v3); // conversion of equal sized vectors with lost precision

These three vector constructor calls result in the three vectors initialized with the following values:

Variable Value
v4 <1.0, 2.0, 3.0, 4.0>

v3 <0.0, 1.0, 2.0>

vb3 <false, true, true>

6.8.2 Conversion

When required by use in an expression, a value of a vector type will be implicitly converted to another
vector type of the same length provided the element types allow implicit conversion.

The following table lists the automatic conversion rules for each vector type:

Type Can be converted to
bool vectors int, float, or double vectors
int vectors float or double vectors
float vectors double vectors

6.8.3 Members

The vector types support member variables to access their components and follow a common scheme to
determine which members are available for each vector type.

The ’x’, ’y’, ’z’, and ’w’ members provide access to up to four components. A particular vector type
will only support the first n components where n is the dimension of the vector. For example, float2
supports the ’x’ and ’y’ members.

Vector components can also be accessed using array indices and the array index can be a variable.

float4 v = ...;

float sum = 0.0;

for (int i=0; i<4; i++)

sum += v[i];

In this example the vector v has its components summed using a loop.
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6.8.4 Operators

Vectors support math operators in a component-wise fashion. The operator is applied to each component
of the operand vectors independently and the result is a vector of the same size as the operands. Vectors
support comparison operators returning a scalar bool value. The operand vectors must be the same size
or one must be a scalar (in which case it is automatically promoted to a vector with the same dimension as
the other operand).

The float2, float3, float4, double2, double3, double4, int2, int3, and int4 types support the following
operators:

= / /= + += - -=

* *= == != ++ --

The int2, int3, and int4 types additionally support the modulo and bitwise operators, where the right-
hand side of the shift operators must be a value of type int.

% %= << >> >>> <<= >>= >>>=

~ & ^ | &= ^= |=

The bool2, bool3, and bool4 types support the following operators:

= == != && ! ||

The following example illustrates in its second line how implicit conversions of scalar values and above
operator overloads work together. The int literal value 1 is implicitly converted to a float type to match
the only applicable subtraction operator that takes a scalar on the left-hand side and a float3 vector on
the right-hand side.

float3 x(1, 2, 3);

float3 y = x - 1;

The resulting value of the y variable is (0, 1, 2).
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6.9 Matrices – float and double

MDL provides several matrix types with column and row sizes ranging from two to four. Matrix elements
can be of type float or double. Matrix types are named type[columns]x[rows] where type is one of
float or double, [columns] is the number of columns and [rows] is the number of rows.

Specifically, the built-in matrix types are: float2x2, float2x3, float3x2, float3x3, float3x4, float4x2,
float2x4, float4x3, float4x4, double2x2, double2x3, double3x2, double3x3, double3x4, double4x2,
double2x4, double4x3, and double4x4.

The matrix type float4x4 is used to represent coordinate-system transformations in Section 19.2.

Note: The naming convention, the column-major order implied below, and the coordinate-system
transformation conventions in Section 19.2 are compliant with the respective OpenGL conventions.

6.9.1 Constructors

A matrix can be default constructed or constructed from a single scalar, a series of scalars of the same
number as the number of matrix elements, a series of vectors of the same number as the number of columns
of the matrix, or a matrix of the same dimensions.

In the following, all constructors are explained in detail with the matrix type float3x2 as a representative
for all matrix types, while implicit conversions, which apply in addition, are documented in Section 6.9.2.

float3x2()

The default constructor creates a zero-initialized matrix.

float3x2(float value)

The diagonal elements of the matrix are initialized with the scalar value while the other ele-
ments are initialized with zero.

For example, float3x2(1.0) results in the following matrix value:

(

1.0 0.0 0.0
0.0 1.0 0.0

)

Or, float4x4(1.0) results in the 4 × 4 identity matrix.

float3x2(float m00, float m01, float m10, float m11, float m20, float m21)

A matrix can be constructed from a series of scalars in column-major order where the number
of scalars passed to the constructor is the same as the number of elements of the matrix.

For example, float4x3(1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.5, 0.0)

results in the following matrix value:





1.0 0.0 0.0 0.0

0.0 1.0 0.0 0.5
0.0 0.0 1.0 0.0
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float3x2(float2 col0, float2 col1, float2 col2)

A matrix can be constructed from a series of vectors where each vector represents a column
of the matrix. The dimension of the vectors must be the same as the size of columns in the matrix.

In the following example, the matrix mat gets the same value as in the previous example of
the element-wise constructor:

float3 col0(1.0, 0.0, 0.0);

float3 col1(0.0, 1.0, 0.0);

float3 col2(0.0, 0.0, 1.0);

float3 col3(0.0, 0.5, 0.0);

float4x3 mat(col0, col1, col2, col3);

float3x2(float3x2 value)

float3x2(double3x2 value)

A matrix can be constructed from any other matrix of equal dimensions, which may result in a
loss of precision.

6.9.2 Conversion

When required by use in an expression, a value of the matrix type will be implicitly converted to another
matrix type of the same dimensions, provided that the element types allow implicit conversion. For
example, the legality of the implicit conversion from a value of type float to one of type double allows float
matrices to be converted into double matrices.

6.9.3 Members

The matrix types use array notation to provide access to their members, which are columns of the matrix.
An index of zero refers to the first column of the matrix and indices of up to n − 1 (where n is the number
of columns) provide access to the remaining columns.

The data type of matrix columns are vectors with dimension equal to the number of rows of the matrix.
Since columns are vectors and vectors support array syntax to access vertex elements, individual elements
of a matrix can be accessed with syntax similar to a multidimensional array.

For example:

float4x3 mat(1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.5, 0.0);

float3 col;

float element;

// col will equal <0.0, 1.0, 0.0> after the assignment

col = mat[1];

// element will equal 0.5 after the assignment

element = mat[3][1];
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6.9.4 Operators

The matrix types support the following operators based on linear algebra:

= / /= + += -

-= * *= == !=

The multiplication operator multiplies two matrices, a matrix and a vector, or a matrix and a scalar in a
linear algebra style multiplication. When multiplying two matrices, the number of columns of the matrix
on the left must be equal to the number of rows of the matrix on the right. The result of multiplying a TxN
matrix with a MxT matrix is a MxN matrix. A vector can be multiplied on the right or left side provided the
number of elements is equal to the number of rows when the vector is on the left side of the matrix and
the number of elements is equal to the number of columns when the vector is on the right. A matrix can
be multiplied component-wise with scalar.

The division operator is supported to divide a matrix component-wise by a scalar.

The equality and inequality comparison operators, == and !=, return a scalar bool. They require that the
operands are matrices of the same dimension or one operand is a scalar. The matrix elements are compared
component-wise. A scalar operand is first converted to a matrix of the same type using the corresponding
constructor.

The assignment, add and subtract operators are applied component-wise and require that the operands are
matrices of the same dimension.
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6.10 String

A string is a sequence of characters of arbitrary length. MDL uses strings primarily as parameters to
identify options or user defined categories. Because of the restricted need for strings in a material language,
and the fact that some platforms have limited or no support for strings, MDL defines a limited set of string
handling functionality.

String literals and the MDL character set are described in Section 5.

6.10.1 Constructors

string() The default constructor creates the empty string "".

string(string value)

A string can be constructed from another string.

6.10.2 Operators

The string type supports the following operators:

= == !=
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6.11 Color

The MDL color type represents values across a continuous spectrum of wavelengths. The type is an
abstraction of the conventional RGB representation of colors that enables materials to work with renderers
that use a more accurate representation and rendering of colors.

A value of the color type maps wavelengths to float values. Wavelengths are given as float values in
nanometers [nm] that are in the range [limits::WAVELENGTH_MIN, limits::WAVELENGTH_MAX], where the
range bounds are constants in the stdlimitsmodule (see Section 17) that depend on, and are provided by,
the renderer implementation.

The exact implementation of the color type is not subject of the MDL specification. An implementation
does not have to represent a spectrum exactly, it may choose to approximate spectra. For example, a simple
implementation may actually represent colors as conventional RGB triples.

Unless otherwise specified, operations will be performed using the vacuum wavelength λ0 = λ · η, where
λ is the local wavelength in a medium with an index of refraction of η.

6.11.1 Constructors

color() The default constructor creates a black color with zero amplitude everywhere.

color(float value)

The amplitude of the color value is everywhere initialized to the scalar value, creating a gray
color of corresponding magnitude.

color(color value)

The copy constructor creates a copy of the color value.

color(float r, float g, float b)

color(float3 rgb)

A color can be constructed from three float values or a single float3 value, where the ’x’,
’y’, and ’z’ components are interpreted as red, green, and blue color component values, re-
spectively, in the linear sRGB color model.

Converting a float3 value to a color value and back to a float3 value shall result in the
same value up to some numerical precision inaccuracies.

color(float[<N>] wavelengths, float[N] amplitudes)

A color can be constructed from two float arrays that define samples for a smooth spectrum
representation, for example, of unitless reflectivities. The first array contains the wavelengths
in increasing order and the second array, which must be of equal size, contains the amplitude
values at these wavelengths. The construction may choose an approximation to represent the
spectrum.

The following example creates a color from a function intensity(float lambda), which returns the value
at wavelength lambda. It samples the function at the wavelengths recommended for color construction by
the state function wavelength_base() and passes both arrays to the color constructor.
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color create_color() {

float[state::WAVELENGTH_BASE_MAX] wavelengths = state::wavelength_base();

float[state::WAVELENGTH_BASE_MAX] values;

for ( int i = 0; i < state::WAVELENGTH_BASE_MAX; ++i) {

values[i] = intensity( wavelengths[i]);

}

return color( wavelengths, values);

}

Note: The construction of color values and the conversion between RGB values and color values
potentially come at significant runtime costs depending on the implementation-defined color representation
of the color type.

Note: The construction of color values from spectral data can differ depending on the kind of of data, for
example, unitless reflectivities, for which the color constructor is suitable, or light emission intensities, for
which the standard math function emission_color() is suitable.

6.11.2 Conversion

There are no implicit conversions from and to values of type color.

6.11.3 Operators

The color type supports the following math operators which work on the color values:

= / /= + += -

-= * *= == !=

All operators are defined for the color type as parameter on both sides. The +, -, and * operators are
additionally defined for all combinations of a color type added, subtracted, and multiplied with a float.
The / operator is additionally defined for the division of a color type divided by a float.

The equality and inequality comparison operators, == and !=, return a bool type. All other operators
return a color type.
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6.12 Textures

The MDL texture types represent references to texture data, associated sampler settings and lookup
functions in the standard library. There are four texture types for four different texture shapes:

• texture_2d references texel data stored in a two-dimensional uniform grid.

• texture_3d references texel data stored in a three-dimensional uniform grid.

• texture_cube references texel data stored in a collection of six two-dimensional uniform grids, one
for each direction (+x, −x, +y, −y, +z, and −z).

• texture_ptex references texel data stored in the PTEX format for two-dimensional surfaces.

Conceptually, texel data is either represented consistently as a single floating-point value, a vector of
floating-point values, or a color value over the whole texture.

The use of the texture types is restricted to uniform function and uniform material parameters. They
cannot be used with variable definitions, except for variables in let-expressions, nor in structure or array
type definitions.

A parameter of texture type can have an invalid reference value if no texture data was provided.

The texture_2d type can reference a single texture image or a uv-tileset, which is a whole set of texture
images that are placed at integer uv-positions in texture space. Except where noted otherwise, single texture
images and uv-tilesets behave the same, where the single texture image is interpreted as a uv-tileset with a
single tile at index position (0, 0). One difference is the placement in uv-texture space: The uv-position of
a single texture image can be controlled through the wrap mode and crop parameters of the texture lookup
functions, while those parameters are ignored for a uv-tileset (Section 20.3).

For texture data with an inherent frame of reference in space, MDL makes the following recommendations
on texture space placement and orientation:

• The origin of a texture_2d type is in the lower left corner of the texture data. The x-axis extends to
the right and the y-axis extends to the top.

• The origin of a texture_3d type is in the lower left back corner of the texture data. The x-axis extends
to the right, the y-axis extends to the top, and the z-axis extends to the front. This convention implies
that the respective unit basis vectors, ex, ey, and ez, form a right-handed coordinate system with
ex × ey = ez.

6.12.1 Constructors

texture_2d()

texture_3d()

texture_cube()

texture_ptex()

The default constructor creates an invalid reference value.
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texture_2d( uniform texture_2d value)

texture_3d( uniform texture_3d value)

texture_cube( uniform texture_cube value)

texture_ptex( uniform texture_ptex value)

A texture can be created from another texture value of equal texture type.

texture_2d( uniform string name, uniform tex::gamma_mode gamma = tex::gamma_default)

texture_3d( uniform string name, uniform tex::gamma_mode gamma = tex::gamma_default)

texture_cube( uniform string name, uniform tex::gamma_mode gamma = tex::gamma_default)

texture_ptex( uniform string name, uniform tex::gamma_mode gamma = tex::gamma_default)

A texture can be created from a file path including an optional marker to select whole uv-
tilesets, defined in Section 2.2, given as literal argument to the name parameter of type string.
The file path needs to name a file or uv-tileset in one of the eligible texture file formats defined
in Section 2.3. It is an error if the texture file or the uv-tileset does not exist.

Note: The gamma mode determines if the integration needs to apply an inverse-gamma cor-
rection or not before using the texture. This enumeration type is defined as part of the standard
module tex in Section 20.3.
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6.13 Light profile

The MDL light_profile type is used to represent a reference to light profile data, which is typically
provided by vendors of real-world physical lights to describe precisely how much light is emitted from a
point light source in a particular direction.

The use of light_profile is restricted to uniform function and uniform material parameters. It cannot
be used with variable definitions, except for variables in let-expressions, nor in structure or array type
definitions.

A parameter of type light_profilecan have an invalid reference value if no light profile data was provided.

6.13.1 Constructors

light_profile()

The default constructor creates an invalid reference value.

light_profile( uniform light_profile value)

A light profile can be created from another light profile value.

light_profile( uniform string name)

A light profile can be created from a file path, defined in Section 2.2, given as literal argument
to the name parameter of type string. The file path needs to name a file in one of the eligible
light profile file formats defined in Section 2.4. It is an error if the light-profile file does not
exist.

6.13.2 Members

The light_profile type has no members.
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6.14 Bsdf measurement

The MDL bsdf_measurement type is used to represent a measured bidirectional scattering distri-
bution function (BSDF) that can be used with the corresponding elemental distribution function
df::measured_bsdf in Section 21.1.4 to render the measurement.

The use of bsdf_measurement is restricted to uniform function and uniform material parameters. It cannot
be used with variable definitions, except for variables in let-expressions, nor in structure or array type
definitions.

A parameter of type bsdf_measurement can have an invalid reference value if no measurement data was
provided.

6.14.1 Constructors

bsdf_measurement()

The default constructor creates an invalid reference value, which renders a black opaque material
if used.

bsdf_measurement( uniform bsdf_measurement value)

A BSDF measurement can be created from another BSDF measurement value.

bsdf_measurement( uniform string name)

A BSDF measurement can be created from a file path, defined in Section 2.2, given as literal
argument to the name parameter of type string. The file path needs to name a file in one of the
eligible BSDF measurement file formats defined in Section 2.5. It is an error if the file does not
exist.

6.14.2 Members

The bsdf_measurement type has no members.
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7 Arrays

array_type : simple_type [[ [conditional_expression | < simple_name > ] ] ]

Array types in MDL are similar in form to the typical array types of other programming languages, defining
a sequence of data values of the same element type. Arrays are one-dimensional and of non-negative size,
that is, arrays of zero size are allowed. Multi-dimensional arrays are not available in MDL.

MDL provides two kinds of array types: the size-immediate array types and the size-deferred array types.
Both array types behave the same unless noted otherwise.

The size-immediate array type is the conventional array type whose size is immediately specified as a
constant expression (see Section 6.5 for constant expressions). A size-immediate array type consists of
a constant non-negative integer expression for the size within square brackets ([ ]) that follows the type
identifier for the elements of the array. Two size-immediate arrays have the same type only if both the
type of array element and their sizes are the same.

The following example shows a few variables of size-immediate array type:

int[4] channels;

float[3] weights;

bool[7] layer_active;

The size of a size-deferred array type is represented by a symbolic size identifier. The actual size is not
defined immediately with the array type but deferred to the point where the array value is initialized, which
can—for function and material parameters—be even outside of the MDL source files. Two size-deferred
arrays have the same type only if both the type of array element and their size identifier are the same.

The size identifier, when used the first time, must be enclosed in angle-brackets (< >). This is the point of
declaration of the size identifier. It is only allowed in function or material parameter lists, for example:

float sum_array( float[<count>] values);

The size identifier obeys normal scoping rules. It can also be used more than once to define further size-
deferred arrays. All uses of a declared size identifier are then without the angle-brackets, which are reserved
for declaring new size identifiers. The following example requires that both arguments need to be of the
same type, and here in particular of the same array size, when calling this function:

float inner_product( float[<n>] a, float[n] b);

The value of the size identifier is a non-negative integer value of type int. It is not a l-value. However,
although it cannot change its value, it is not a constant value in the sense of constant expressions of
Section 6.5.

The full details about the use of size-deferred array types in function and material parameters are explained
in Section 12.5.
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7.1 Constructors of size-immediate arrays

Array constructors support only positional arguments and not named arguments, which are explained in
Section 12.

type[n]()

The default constructor creates a size-immediate array value of the given element type type and
given size n, where all elements are default constructed.

type[n]( type[n] value)

The copy constructor creates a size-immediate array value of the given element type type and
given size n, where all elements are copy-constructed from the corresponding elements in
value.

type[n]( type value0, ..., type valuen−1)

type[]( type value0, ..., type valuen−1)

A constructor creating a size-immediate array value of the given element type type and of
size n, where the elements are initialized with the parameter values. In the second variant
of this constructor the array size is deduced from the number of arguments provided to the
constructor.

Examples of size-immediate array constructors:

int[4] channels( 0, 1, 2, 3 );

int[4] channels2 = int[]( 0, 1, 2, 3); // identical to channels

float[3] weights = float[3](); // zero initialized

float[3] weights2; // identical to weights

7.2 Constructors of size-deferred arrays

Array constructors support only positional arguments and not named arguments, which are explained in
Section 12.

type[identifier]()

The default constructor creates a size-deferred array value of the given element type type and
given symbolic size identifier, where all elements are default constructed.

type[identifier]( type[identifier] value)

The copy constructor creates a size-deferred array value of the given element type type and
given symbolic size identifier.

Examples of size-deferred array constructors:
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float array_examples( float[<count>] values) {

float sum = sum_array( float[count]()); // default c’tor with all zeros

return sum_array( float[count]( values)); // explicit copy c’tor

}

7.3 Conversion

For the purpose of function calls and overload resolution, see Section 12.4, a size-immediate array type
can be implicitly converted to a size-deferred type of the same element type and compatible size identifier,
and a dependent size-deferred array type can be implicitly converted to a defining size-deferred array type
of the same element type. See Section 12.5 for all details on the use of size-deferred array types as function
parameters.

7.4 Operators

A value of an array type can be assigned to a l-value of the same type with the assignment operator ( = ).

Array elements are accessed by a non-negative integer expression of type int in square brackets following
the array expression. These array indices are zero-origin; the index of the first element is zero, the index of
the nth element is n − 1.

float[3] weights;

bool[7] layer_active;

// ...

float red_factor = weights[0];

layer_active[6] = false;

Out-of-bounds accesses may not be checked in MDL and have undefined behavior.

The type-cast operator can be used to change the type of an array to another, cast-compatible array type.
Two array types are cast-compatible if they are both of size-immediate or size-deferred type, they have the
same number of elements, and the element type of one can be cast to the element type of the other array
type.
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8 Structures

struct_type_declaration : struct simple_name [annotation_block ]

{ {struct_field_declarator} } ;

struct_field_declarator : type simple_name [= expression ]

[annotation_block ] ;

MDL supports the definition of user-defined structures. A structure is a collection of named variables,
possibly of different types. The declaration of a structure defines a new type name.

A structure is declared using the keyword struct followed by the name of the structure and the declaration
of member variables, the structure’s fields, enclosed in curly braces. Fields are declared with the same syntax
as local variable declarations and may have an initializer expression. A field name can be any legal MDL
identifier, though it cannot have the same name as the structure type.

Fields can have any built-in type or another user-defined structure type to produce a nested structure. A
field can also have a size-immediate array type. Size-deferred array types are not allowed as field types.

Fields can have the uniform or varying modifier on their field types. In addition, the structure type can,
when used, have another uniform or varying modifier for the whole structure type, which applies then to
all field types. In this case, it is allowed if a field has already the same modifier on its type, but it is an error
if it has a different modifier on its type.

For example, the following structure definition defines the type color_pair:

struct color_pair {

color dark;

color bright;

};

Once defined, a structure type can be used in the same manner as MDL’s built-in types; to declare variables,
function parameters and material parameters.

color_pair checkerboard;

A field may define an initialization value in the structure definition. The value can be any expression of
that field’s type including references to previous fields and function calls. The value is preceded by an
equals sign ( = ).

struct color_pair {

color dark = color(0.2, 0.2, 0.2);

color bright = color(1.0, 0.2, 0.1);

};

A structure can contain both uninitialized and initialized fields. All uninitialized fields, if any, must precede
the first initialized field. (This restriction follows the requirements for default parameter values in function
definitions; see Section 12.)
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8.1 Constructors

A structure declaration looks generically like

struct structure_type {

T1 name1;

...

Ti−1 namei−1;

Ti namei = initializeri;

...

Tn namen = initializern;

};

where fields with initializer follow fields without initializer, and either or both can be omitted. With this
notation, the following constructors are defined for each structure type:

structure_type()

The default constructor initializes all fields without initializer with their respective default
constructor and all fields with initializer with the respective initializer value.

structure_type( structure_type value)

The copy constructor creates a field-wise copy of value.

structure_type( T1 name1, ..., Ti−1 namei−1, Ti namei = initializeri, ..., Tn namen = initializern)

A constructor with a parameter for each field, which allows to define a value for each field at
definition. Passing arguments to constructors is identical to passing arguments to functions
described in Section 12. In particular, all fields without initializer require an explicit argument
while all fields with initializer can be optionally left out, which initializes them to the value of
their initializer expression. Note that, in addition, the default constructors mentioned above
create a value of a structure type without providing any argument to any field.

For example, given the following definition of polygon

struct polygon {

int sides;

color fill_color = color(1,1,1);

color edge_color = color(0,0,0);

};

a variable of type polygon can be created with its constructor:

polygon triangle( 3, color(1, 0, 0), color(0.5, 0.5, 0.5));
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Another variable of type polygon can be created with its default constructor:

polygon nogon;

The value of nogon is equal to polygon(0), and also polygon(0, color(1,1,1), color(0,0,0)), which
makes all default constructed values and initializers explicit.

8.2 Operators

A value of a structure type can be assigned to a l-value of the same type with the assignment operator ( = ).

Fields are referenced with the usual dot notation of the member selection operator, with a structure variable
name followed by a dot ( . ) and the field name:

checkerboard.dark = color(0.2, 0.2, 0.2);

checkerboard.bright = color(1.0, 0.2, 0.1);

// ...

color tile_color = checkerboard.dark;

The type-cast operator can be used to change the type of a structure to another, cast-compatible structure
type. Two structure types are cast-compatible if they have the same number of fields and if each pair of
fields of equal position in the respective structure type can be cast from one to the other. The names of the
fields do not matter, only the order in the structure definition.

For example, given the following alternative definition of a structure with two color fields:

struct two_colors {

color c1;

color c2;

};

We can assign a value of the color_pair structure from above to a variable of this new structure using a
type-cast operator expression:

color_pair col1( color(0.1), color(0.2));

two_colors col2 = cast<two_colors>(col1);
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9 Enumerations

enum_type_declaration : enum simple_name [annotation_block ] {

enum_value_declarator {, enum_value_declarator}

} ;

enum_value_declarator : simple_name [= assignment_expression ] [annotation_block ]

MDL provides the capability to define an enumeration as a convenient way to represent a set of named
integer constants.

An enumeration is declared using the keyword enum followed by a comma separated list of identifiers, the
enumerators, enclosed in curly braces. An enumerator cannot have the same name as the enumeration type.

For example:

enum detail { low, medium, high };

The enumerators can be explicitly assigned literal values as well.

For example:

enum detail {

low = 1,

medium = 2,

high = 3

};

This example defines a new type called detail with possible values of low, medium and high. Enumeration
type values can be implicitly converted to integers which results in an integer with the explicitly assigned
value. If explicit values are not specified, each element is assigned the value of its predecessor plus one.
The first element is assigned the value zero.

The values associated with an enum are not required to be unique within the type. For example, the
following are both legal enum declarations:
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enum bool_states {

on = 1,

yes = 1,

off = 0,

no = 0

};

enum foo {

a = 2,

b = 1,

c // c will implicitly be assigned the value 2

};

The declaration of an enum defines a new type name and anonymous enums are not supported. The enum
elements themselves define a symbol within the scope where the enum is declared.

The enum default constructor has the value of the first enumeration value.

9.1 Operators

The type-cast operator can be used to change the type of an enumeration to another, cast-compatible

enumeration. Two enumerations are cast-compatible if they have the same set of enumerator integer
constants. The names of the enumerators or if multiple enumerators share the same constants do not
matter.

For example, given the following definition of a two-valued enumeration:

enum flag {

false_state,

true_state

};

We can assign a value of the bool_states enumeration from above to a variable of this new enumeration
using a type-cast operator expression:

bool_states b( yes);

flag f = cast<flag>(b); // f has the value true_state
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10 Typedef

alias_type_declaration : typedef type simple_name ;

The typedef specifier allows a new type name to be introduced which acts as a synonym for an existing
type name. To declare a new type name, the typedef specifier is followed by the name of an existing type,
an optional array specifier, and after that the new name, which thereafter acts as a synonym for the existing
type.

For example:

typedef int number;

This defines a new type name number which is syntactically synonymous with int.

Declarations that use typedef to define a type name can appear at the file scope level and local scope levels
in functions. On file scope level the new type name is valid from the location at which it is declared to the
end of the file. On local scope levels the new type name is valid from the location at which it is declared
to the end of the local scope.

Once a type name is defined it cannot be redefined in the same scope to name a different type.

The size in a type name for a size-deferred array is bound at the first use of this type in a scope.

Note that typedef does not introduce a new type, but instead only an additional name for an existing
type. This means that for the purpose of differentiating parameters to match overloaded functions, the
type name is not enough for two parameters to be considered different.

For example the following is not legal:

typedef int number;

int overload_example( number x) {}

int overload_example( int x) {} // error -- redefinition of my_function
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11 Control flow

compound_statement : { {statement} }

statement : compound_statement

| type_declaration

| constant_declaration

| variable_declaration

| expression_statement

| if_statement

| switch_statement

| while_statement

| do_statement

| for_statement

| break_statement

| continue_statement

| return_statement

type_declaration : alias_type_declaration

| struct_type_declaration

| enum_type_declaration

MDL supports the familiar programming constructs that control the flow of a function’s execution.
Specifically these are:

• The loop statements for, while, and do-while. The keywords continue and break are supported to
control execution of the loop.

• The branch statements if with optional else clauses and switch statements with cases and optional
defaults.

• A return statement to terminate a function and return a value.

11.1 Loops

for_statement : for ( ( variable_declaration | expression_statement )

[expression ] ; [expression ] )

statement

while_statement : while ( expression ) statement

do_statement : do statement while ( expression ) ;

A for loop is declared using the keyword for followed by three expressions separated by semicolons
and enclosed in parenthesis. The first expression is evaluated once before the loop begins. The second
expression is evaluated once at the beginning of each iteration of the loop and will terminate the loop if
it evaluates to false. The third expression is evaluated once at the end of each iteration of the loop. The
loop body follows the for statement.

For example:
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for (int i=0; i<10; i++) {

// ...

}

Note that the first expression can declare variables which are visible in scope within the second and third
expressions as well as the loop body.

The continue statement can be used in the body of the for loop to jump to the end of the current loop
iteration.

The break statement will terminate the loop without further evaluation of the expressions in the for

statement.

The do and while loop constructs are similar to each other. A while loop begins with the keyword while

followed by an expression enclosed in parenthesis followed by the loop body. The body of the while loop
will be executed as long as that expression evaluates to true.

When used in do or while loops, the continue statement will jump control to the end of the loop. The
break statement will terminate the loop.

A do loop begins with the keyword do followed by the loop body and a while statement. The body will
execute until a break statement is encountered or the expression in the while statement evaluates to false.
The while test will be performed at the end of each iteration through the loop instead of at the beginning.

For example:

while (x<n) { // a while loop

if (x==0) break;

// ...

}

do { // a do loop

// ...

} while (x<n);

11.2 Branches

if_statement : if ( expression ) statement [else statement ]

switch_statement : switch ( expression ) { {switch_case} }

switch_case : case expression : {statement} | default : {statement}

An if statement is declared using the keyword if followed by an expression contained in parenthesis
followed by a statement that will be executed if the expression evaluates to true.

The else keyword can optionally follow indicating a statement that will be executed if the expression
evaluates to false. In nested conditional statements, an else statement matches the closest unmatched if
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statement.

For example:

if (x<n) {

// statements that execute if x<n

} else {

// statements that execute if not x<n

}

Switch statements allow control to jump to a selected body of statements based on an integral value. A
switch statement is declared using the keyword switch followed by an expression enclosed by parenthesis.
The expression must evaluate to an int valued expression. Following this is a series of caseblocks enclosed
in curly braces.

The case blocks are declared using the keyword case followed by a colon, then a constant integral value,
and finally the statements of the case block. If the value of the expression in the switch statement equals
the case value, that case block will be executed. Execution will fall through to the subsequent case block
unless control is terminated with a break statement.

An optional default case block can be declared using the default keyword followed by a colon and then
the statements to be executed if no other case statement matches the expression value.

A case block has its own scope that extends to the next case block or the end of the switch block if it is
the last case block. In consequence, variables declared in a case block are not accessible in any other case
block.

For example:

switch (x) {

case 0:

// statements that will be executed if x==0

break;

case 1:

// statements that will be executed if x==1

break;

case 2:

// statements that will be executed if x==2

break;

default:

// statements that will be executed if x!= 0, 1, or 2

break;

}

11.3 Jumps

break_statement : break ;

continue_statement : continue ;
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return_statement : return expression ;

The return statement terminates execution of the current function and returns control to the calling function
or completes execution of the function if the current function has been called by the renderer.

A return statement is declared using the return keyword followed by a return value, whose type is equal
to or has an implicit conversion to the return type of the function.

The break statement is used to terminate a loop or switch statement. The continue statement is used to
terminate an iteration of a loop and proceed to the next iteration of the loop.

The return, break, and continue statements all cause the flow of control to jump to a new location in
the code.
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12 Functions

function_declaration : type [annotation_block ] simple_name

parameter_list [frequency_qualifier ] [annotation_block ]

( ; | compound_statement )

| . . .

parameter_list : ( [parameter {, parameter} ] )

parameter : type simple_name [= assignment_expression ]

[annotation_block ]

argument_list : (

[named_argument {, named_argument}

| positional_argument {, positional_argument}

{, named_argument}

]

)

named_argument : simple_name : assignment_expression

positional_argument : assignment_expression

MDL can define global, pure functions outside of material declarations that can be called from other
functions or to provide values to material input parameters. Function calls are not allowed to be recursive.

A function is declared and defined in the main scope of a source file. The declaration consists of the return
type, followed by the function name, followed by a list of function parameters surrounded by parenthesis.
The parameter list is a comma-separated list of parameter declarations, each comprised of a type name
followed by the parameter name and an optional default initializer. Parameters with default initializer
must follow parameters without initializer. Default initializer can refer to parameters before them. For
example:

float function_example( float a, float b = 0.0, float c = b);

Functions must have a declaration that appears before any reference to the function is made. The function
body can be included as part of the declaration or a separate function definition can occur later in the
source file, after the function declaration. It is not an error to have the same function declaration more
than once in an MDL file if only the first declaration uses default initializers. The function definition must
be unique.

The function body opens a new scope for variable definitions. In addition, function parameters are part
of the function body scope. It is thus not possible to shadow function parameters immediately in the
function body.

Unused function parameters may create a warning message at compilation time. Such a warning can be
suppressed with the unused() annotation described in Section 14.

Global functions can be called from material parameter initializers or from other functions. A function call
consists of the name of the function followed by a list of function arguments surrounded by parenthesis.
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The argument list is a comma-separated list of expressions. The argument list may be empty. A function
call is an expression which has the type of the return type of the function declaration and is then subject
to implicit conversion if the return value is used. For example, above declaration can be called as follows
with its return value assigned to a variable:

double d = function_example( 5.0);

Function arguments are evaluated and assigned in the order from left to right to the corresponding
parameters. Parameters without an argument must have a default initializer. Default initializers are also
evaluated in the order from left to right.

For example, above function call is equivalent to:

double d = function_example( 5.0, 0.0, 0.0);

In addition to such positional arguments, where the position in the argument list decides to which parameter
name an argument binds, MDL supports named arguments, where the parameter name is given explicitly
with a parameter selector and separated with a colon from the argument value. This simplifies the use of
functions if only a few of its parameters get values and the others remain default initialized.

For example, above function call is also equivalent to the following three variants:

double d1 = function_example( a: 5.0);

double d2 = function_example( b: 0.0, a: 5.0);

double d3 = function_example( c: 0.0, a: 5.0);

Note: Named arguments imply that the name of function parameters are part of the function signature.
The name is not an implementation decision for a function and cannot be changed without considering all
function calls.

Positional and named arguments can be used in a single function call. Positional arguments must be
provided first and followed by named arguments.

All parameters without default initializer must have a value provided in the call, either through a positional
or named parameter. Positional arguments can also be used on parameters with default initializers. No
parameter is allowed to have more than one argument setting its value in a function call. This can occur
with multiple named arguments, which is always a function call error. It can also occur with a combination
of a positional and named argument, which eliminates this function declaration from the overload set (see
overload resolution in Section 12.4) while other function declarations might still match.

12.1 Parameter passing

parameter : type simple_name [= assignment_expression ]

[annotation_block ]

Function arguments are semantically passed by value to function parameters. The argument’s value is
copied into the function being called, but the parameter’s value is not copied back out. Results are only
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passed back to the callee through the functions return value. Multiple results need to be packaged into a
suitable type, such as a structure type or array type.

A function call is matching a function declaration if it has the same function name and its arguments match
the parameter types. An argument matches a parameter type if the type of the argument expression is
equal to the parameter type or an implicit conversion exists from the type of the argument expression to
the parameter type including an implicit promotion from a uniform type to a varying type.

The copying behavior described above specifies the semantics of function parameter passing. A particular
MDL implementation may choose another implementation, for example, for better performance, as long
as the described copy-semantic behavior is guaranteed.

A function return value must be initialized with a return statement.

12.2 Uniform and varying parameters and functions

Function parameter types can be explicitly declared uniform or varying. Otherwise they are auto-typed
and have the same property as the call arguments.

Note: For larger parameter lists auto-typing may lead to many possible combinations of which some may
not be legal for type reasons, such as a varying value that cannot be assigned to a uniform parameter or
variable. These illegal combinations must be detected at compilation time with an error diagnostic, but,
otherwise, these combinations may not necessarily require different implementations.

A function return type can be explicitly declared uniform or varying. Otherwise it is auto-typed. In
case the return type is auto-typed, there can only be two sources that can make the return type varying,
otherwise it will be uniform: varying function parameters and function calls in the function body that
return varying values. To simplify the static analysis of functions, an auto-typed return type is defined to
be varying if and only if one or both of the following two conditions apply:

1. At least one of the function parameters is varying. This is independent of whether the actual varying
value would influence the return value or not.

2. The function body contains calls of other functions that are varying or have varying return types.
This is independent of whether the actual execution of the function body would call these functions
and whether the function results would influence the return value or not.

A compiler can analyze the second condition. However, MDL allows a programmer to declare explicitly
if a function is varying or uniform — if the second condition is met or not — by placing the varying or
uniform keyword after the closing parenthesis of the parameter list.

For example:

float3 uniform_function_example( float3 param) uniform; // function declaration

float3 varying_function_example( float3 param) varying { // function definition

return param + state::normal();

}

For a varying function, an auto-typed return type is always varying. More interesting is a uniform function:
The compiler can guarantee that the implementation does not call varying functions and when calling it, an
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auto-typed return type is varying if and only if one of the function arguments is varying, and it is uniform
otherwise.

This allows the natural and concise implementation of functions that can be used in a context of varying
values as well as uniform values, such as standard library functions.

For example:

float sin( float a) uniform;

Calling this sin function with a varying argument results in a varying result value and calling it with an
uniform argument results in an uniform result value.

12.3 Function and operator overloading

Multiple functions with the same name can be defined, called function overloading, provided they differ at
least by the number or types of parameters. It is not sufficient for overloaded functions to only differ by
return type, by name of parameters, or by their uniform, varying, or auto-typed property. For the purpose
of being a different parameter type in this definition, it is also not sufficient if two types differ just by their
uniform, varying, or auto-typed property.

A module (Section 15) always imports and exports all overloads of a function together. In addition, a
module can add additional overloads to a function that it imports unqualified and may re-export this set
of overloads again.

Note: The rules on imports prevent that function definitions from different modules are imported
unqualified in the same module at the same time. The set of overloaded functions is thus always declared
in a single module.

Various operators in MDL are overloaded for different parameter types, but additional user-defined
overloads are not allowed.

12.4 Function overload resolution

Scope and overload resolution is the process that decides which function definition or operator is called
at a particular function or operator call location. Everything said in this section for functions applies for
operators as well unless specifically said otherwise. The handling of operators is simplified to the extent
that all operators are defined in global scope and no additional user-defined overloads exist.

The identifier used in a function call is searched from the innermost scope enclosing the call outwards until
a scope is found in which this identifier is declared. This declaration must declare a function, otherwise
the program is ill-formed. The set of all function declarations in that scope with the same identifier is now
considered for overload resolution.

Qualified identifiers are searched for in the module named in the qualification of the identifier. A similar
set of all function declarations in that module scope is now considered for overload resolution.

All function declarations for which the signature does not match the call are eliminated from the set. A
function signature S does not match the call if:
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• The type of a positional argument in the call is not equal to the type of the parameter in that position
in S or does not have an implicit conversion from the argument type to the parameter type.

• The parameter name of a named argument in the call does not exist in S.

• The type of a named argument in the call is not equal to the type of the named parameter in S or does
not have an implicit conversion from the argument type to the parameter type.

• A parameter is specified more than once in the call if applied to S.

If the set of matching function declarations is empty after the above eliminations, the program is ill-formed.

If the set contains two or more function declarations, these will be compared pairwise and the less specific

declaration will be removed from the set. This process is iterated until no further eliminations are possible.

If the set contains only one function declaration after the above eliminations, the corresponding function
is called. Otherwise the overload resolution is ambiguous and the program is ill-formed.

A function signature T is less specific than a function signature U if for each positional or named argument
that is used in the function call the types of the corresponding parameters are identical or there exists an
implicit conversion from the type of the parameter of U to the type of the parameter of T.

Note: Above rules imply in MDL that if exactly one function declaration exists in the overload set for
which all parameters match exactly without implicit conversions, the corresponding function is called.

The following example shows a few cases of which function declaration is chosen for which function call.
Note that the overload of the standard library function is not necessarily recommended in practice.

using std import max; // (1) unqualified import of all overloads of max

int foo( float x); // (2)

int foo( double x); // (3)

int bar( int a, int b); // (4)

int bar( float a, double b); // (5)

int bar( double b, float b); // (6)

float max( int a, float b); // (7) (not recommended to overload std library)

int overload_resolution_example() {

foo( 1); // calls (2) since (2) is more specific than (3)

foo( 1.0f); // calls (2) since (2) is an exact match

foo( 1.0d); // calls (3)

bar( 1, 1); // calls (4)

bar( 1.0f, 1.0f); // ! fails with (5) and (6) being the ambiguous matches

max( 1, 1); // calls max using (1), the max(int,int) from std::

max( 1, 1.0f); // calls (7) as an exact match

}

Note: Function overloads are more naturally used with positional than with named arguments. The
following example illustrates some of the possible results with named arguments.
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int foo( int a = 0, float b = 0); // (1)

int foo( float b = 0, float a = 0); // (2)

int overload_resolution_example() {

foo(); // ! fails with (1) and (2) being the ambiguous matches

foo( 1); // calls (1) since here (2) is less specific than (1)

foo( 1.0f); // calls (2)

foo( a: 1); // calls (1) since here (2) is less specific than (1)

foo( 1, b: 1.0f); // calls (1) because the call would set b twice for (2)

foo( a: 1, b: 1.0f); // calls (1) since here (2) is less specific than (1)

}

12.5 Function parameters of size-deferred array type

A size-deferred array type, see Section 7, can be used for function parameters. When the function is called,
the size identifier — as a read-only variable of type int — is added to the scope of the function. The
value of this identifier is then initialized to the size of the array passed as the function argument. The size
identifier can be used throughout the function scope as a read-only value as any other variable of type int.

For example, the following function has one parameter, a size-deferred array named values.

float sum_array( float[<count>] values) {

for (int i = 0; i < count; ++i)

result += values[i];

return result;

}

The name of the size identifier of the values array is count. Within the body of the function, count can
then be used to control the for loop.

Any size-immediate or size-deferred array value can be passed as a function argument of a size-deferred
array parameter.

For example, in the following call of sum_array, the value of the count size identifier is 4. The initialized
value of total_weight from the result of the function call is 2.4.

float[4] weights( .2, .3, .5, 1.4 );

float total_weight = sum_array(weights);

Size-deferred arrays using different identifiers inside the angle brackets are of different type. It is still
possible to test the sizes at run-time and provide component-wise operations. For example:
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float inner_product( float[<n>] a, float[<m>] b) {

if (n != m)

return 0.0;

float result = 0.0;

for (int i = 0; i < n; ++i)

result += a[i] * b[i];

return result;

}

In above example, the array sizes can be enforced to be equal by using the same size identifier for both
arrays; enclosed in angle-brackets (< >) at the first occurrence and plain inside the square-brackets ([ ]) at
all later occurrences. For example:

float inner_product( float[<n>] a, float[n] b) {

float result = 0.0;

for (int i = 0; i < n; ++i)

result += a[i] * b[i];

return result;

}

Assuming both versions of inner_product are offered as function overloads, which is possible, a function
call would choose this overload of inner_product if both arguments are of the same type. If they are of
different type, the first implementation is chosen, although the actual array sizes my be equal.

There could be further specializations of inner_product, for example:

float inner_product( float[2] a, float[2] b) {

return a[0]*b[0] + a[1]*b[1];

}

This overload of inner_productwould only be chosen if the argument arrays are of size-immediate array
type float[2]. It would never be chosen if one or both arguments are of a size-deferred array type.

The return type of a function may be a size-deferred array type, but the identifier inside the square brackets
must already have been declared as the array size of (at least) one of the functions parameters. For example:

int[n] id( int[<n>] a) {

return a;

}

It is possible to declare local variables of size-deferred array type if the size identifier comes from a
parameter declaration. For example:
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int local_variable_example( int[<n>] a) {

int[n] b = a; // copy constructed array of same value

float[n] c; // default constructed array of same size

...

}

Another example illustrates the use of a local variable of a dependent size and its use to accumulate a result
returned through a size-deferred array return type:

float[n] scale( int[<n>] a, float s) {

float[n] result;

for (int i = 0; i < n; ++i)

result[i] = s * a[i];

return result;

}

Any array of a given element type can be passed as an argument for a parameter that is declared as a
size-deferred array type of the same element type. For example:

float magic_sum( float[<n>] a) {

float[3] b( 0, 1, 2);

return sum_array(a) + sum_array(b);

}

Array parameters can have default initializers like other parameters:

float initializer_example( float[<n>] a = float[](1.0)) {

return sum_array(a);

}

For size-deferred array parameters, a function call can nonetheless use an array argument of different size
than used in the initializer.

float result = initializer_example( float[](3.0, 4.0, 5.0));

12.6 Function variant

function_declaration : . . .

| type [annotation_block ] simple_name

( * ) [annotation_block ] = expression ;

A function variant is a short-hand notation to create a new function definition where only (some) default
initializers of an already existing function have been changed, while all parameters remain exposed as
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parameters of the new function. The use of the wildcard (‘*’) hints at the idea that all parameters available
for the function on the right-hand side of the assignment remain accessible by a user of the new function.

For example, given the following example function to define a gray color value

color gray( float intensity = 0.5 ) {

return color( intensity);

}

the following function variants define different names for different intensities of gray while keeping the
intensity parameter exposed for later adjustments:

color light_gray(*) = gray( intensity: 0.8 );

color dark_gray(*) = gray( intensity: 0.2 );

The syntax of a function variant deviates from the function definitions from above in that it does not use
a block of statements but an assignment-like expression referring to the underlying function call, which
can refer to a regular function or to another function variant. Explicit arguments to this function call
overwrite the default initializers, other parameters keep their initializers. The only eligibles expressions
for the right-hand side are function calls or let-expressions, explained in Section 12.7.

A function variant has the same signature as the underlying function, i.e., parameters and return type are
the same, except that those parameters that have received an argument in the right-hand side function
call expression get those arguments as initializers, while others retain there original initializers, or none if
the underlying function did not provide one for this parameter. A function variant can thus have more
initializers than the underlying function, but it remains that parameters with default initializer must follow
parameters without initializer in the resulting signature of a function variant.

For example, given the function definition

float example_function( float a, color b = color(0), bool c = false) {

...

}

the variant

float example_variant(*) = example_function( c: true);

is equivalent to this function definition:

float example_variant( float a, color b = color(0), bool c = true) {

return example_function(a,b,c);

}

Function variants define a new function. Function variants cannot be overloaded, neither by regular
function definitions nor by other function variants.
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The function call on the right-hand side expression can be subject to overload resolution, following the
rules in Section 12.4. In contrast to regular function calls, it is legal for the call in a function variant to
not provide arguments for parameters that have no initializers. An example is the parameter a in the
example_variant function variant above.

Function variants cannot have size-deferred array types as return types.

Note: Function variants are a possibility to store a function call with parameters in an MDL file. An MDL
editor application could use them to store nodes of a node-graph representation.

12.7 Expression sharing in function variants with let-expressions

let_expression : let

( variable_declaration

| { variable_declaration {variable_declaration} }

)

in unary_expression

The expressions for initializers of function variant parameters can be complex or costly to evaluate. The
sharing of such expressions or common sub-expressions is possible with let-expressions.

A let-expression for function variants consists of a block of variable declarations and a final expression
with the function call to the underlying function definition. The scope of the variables extends to the
end of the let-expression, such that the final expression can make use of the variable values. In general,
variables can also be used in subsequent definitions of other variables in the let-expression. Variables are
read-only and cannot be re-defined in the same let-expression.

Variables in let-expression for function variants can be of any MDL type permitted for function parameters.

For example, the following function variant re-uses the result of a texture lookup for two arguments of
the underlying function call:

color example(*)

= let {

color c = tex::lookup_color( texture_2d( "sample.png"));

} in

example_color_function( value1: c, value2: c);

Note: Let-expressions in function variants are a possibility for an MDL editor application to store a
node-graph representation in an MDL file preserving a directed-acyclic graph structure of a function call
network instead of unrolling it to disconnected expression trees.
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13 Materials

Materials are built around two concepts: the material type and material definitions. The material type has
a few related types, among which the distribution functions are the central connection to the renderers to
describe surface, emission and volume properties. The material definitions have a signature like a function
returning a material, but their implementations differ fundamentally from function bodies.

Material definitions exist in two variants: the encapsulating material definition described in Section 13.5 and
the open material definition described in Section 13.6.

Note: This section introduces the following keywords:

material bsdf edf vdf hair_bsdf

material_surface material_emission material_volume material_geometry

They represent types and their use is restricted to what is described in this section and the standard module
in Section 21. In particular, user-defined functions shall not have parameters, return types, or local variables
using these types, and user-defined materials shall not have parameters using these types with the exception
of the material type as detailed in Section 13.7.

13.1 The material type

The material type is defined as a built-in structure-like type with the following definition:

struct material {

uniform bool thin_walled = false;

material_surface surface = material_surface();

material_surface backface = material_surface();

uniform color ior = color(1.0);

material_volume volume = material_volume();

material_geometry geometry = material_geometry();

hair_bsdf hair = hair_bsdf();

};

Primary material definition.

thin_walled – If false, surfaces are treated as interface between two volumes and the iorand geometry

fields describe properties of the enclosed volume. If true, surfaces are treated as double-
sided and enclose an infinitely thin volume. In the thin-walled case, front and back side
use both the front side material if the BSDF and EDF of the backface field are left at
their default values. Otherwise the back side uses the description provided with the
backface field. If different materials are used for the front face and the back face, both
materials must have equal transmission interactions.

surface – Front surface reflection, refraction and emission characteristics. Also used for the back
surface if thin_walled is true and the BSDF and EDF of the backface field are left at
their default values.

backface – Back surface reflection, refraction and emission characteristics if thin_walled is true

and if either the BSDF or the EDF contained in this field is set to a non-default value.
Otherwise this field is ignored.

ior – Index of refraction used in front and back surface transmission interactions.

volume – Scattering and absorption of light within the participating medium in a volume.
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geometry – Controls for geometric manipulations of the object surface.

hair – Hair BSDF describing the aggregated reflective and transmissive scattering of incoming
light for hair primitives.

The material type enables three categorial different materials with respect to how they interpret surfaces:

1. A surface is an interface between volumes.

2. A surface represents a thin wall enclosing conceptually an infinitely thin volume with identical
materials on both sides, for example, window glass can be modeled this way.

3. A surface represents a thin wall with different materials on both sides, in which case both materials
must have equal transmission interactions or otherwise this is an error.

All cases and the corresponding settings of the different fields in the material description are described in
the following table:

field name interface thin wall with equal sides thin wall with different sides
thin_walled false true true

surface used for both sides† used for both sides† used for front side
backface ignored must be set to defaults used for backside

ior used used but no refraction used but no refraction
volume used for enclosed volume ignored ignored

geometry used once with front-side orientation for both sides
hair not affected

†Note: In the first two cases where surface is used for both sides, the EDF contained in surface is only
used for the front side and not for the back side. There is no emission on the back-side unless an EDF is
specified with the backface field and thin_walled is set to true.

The material type shares the properties of structure types to construct values using constructors and to
access fields using the dot-operator. It can be used in other structure types, arrays, or type definitions, but
those are then also subject to the restrictions that apply to the material type.

13.2 Distribution function types: bsdf, edf, vdf, and hair bsdf

Light interaction with objects is divided into four categories to describe reflection and transmission by
a surface, emission of light by a surface, dispersal and absorption within a volume, and reflection and
transmission by a hair primitive. Collectively, these properties are defined by four data types in MDL:

bsdf – A bidirectional scattering distribution function (BSDF) that describes the interaction of light with
the surface. The default constructor bsdf() creates a non-scattering, i.e., black BSDF.

edf – An emission distribution function (EDF) that describes the light-emitting properties of the
surface. The default constructor edf() creates a non-emitting, i.e., black EDF.

vdf – A volume distribution function (VDF) that describes the scattering and absorption of light in a
volume. The default constructor vdf() creates an isotropic VDF.

hair_bsdf – A hair bidirectional scattering distribution function (hair BSDF) that describes the aggregated
interaction of light with the strand of a hair primitive. The default constructor hair bsdf()

creates a non-scattering, i.e., black hair BSDF.
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MDL defines a standard set of distribution functions based on these types for use in constructing the
components of a material. These distribution functions are described in Section 21.

The distribution functions are defined in the df module of MDL. In the examples that follow in
Section 13.4, distribution function names are prefixed by the df:: name qualifier (for example, in
df::diffuse_reflection_bsdf).

13.3 Compound types in the fields of the material

The four fundamental properties of the material type—for the surface, volume, emission, and geometric
characteristics of objects — are represented by struct types. These structs contain fields that specify
instances of distribution functions.

One field in the emission property uses the following built-in enumeration type:

enum intensity_mode {

intensity_radiant_exitance,

intensity_power

};

This mode determines the measure used for the emission intensity.

The four struct types for the fundamental properties of the material type are:

struct material_surface {

bsdf scattering = bsdf();

material_emission emission = material_emission();

};

Surface properties of the material model.

scattering – BSDF describing the reflective and/or transmissive scattering of incoming light.

emission – Light emission properties of the material defined by a struct that contains both the EDF
and an intensity factor.

struct material_emission {

edf emission = edf();

color intensity = color(0.0);

uniform intensity_mode mode = intensity_radiant_exitance;

};

Emission properties of the material model.

emission – The emission distribution function.

intensity – Scaling factor for the result of the emission distribution function. For local EDFs, this is
the radiant exitance if mode is set to intensity_radiant_exitance (the default), or power
if mode is set to intensity_power.

mode – The measure used for the emission parameter.
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struct material_volume {

vdf scattering = vdf();

color absorption_coefficient = color();

color scattering_coefficient = color();

};

Volume properties of the material model.

scattering – VDF describing the scattering of light within the participating medium.

absorption_coefficient – The probability density (per meter in world space) of light being absorbed
by the participating medium.

scattering_coefficient – The probability density (per meter in world space) of light being scattered
from its current direction.

struct material_geometry {

float3 displacement = float3(0.0);

float cutout_opacity = 1.0;

float3 normal = state::normal();

};

Geometric properties of the material model.

displacement – Vector defining direction and distance of position modification of current surface
position in internal space.

cutout_opacity – A value between 0.0 and 1.0 for a cutout mask, where for a value of 0.0 the object
geometry is ignored and for a value of 1.0 the object geometry is there.

normal – Surface normal vector in internal space to use for all calculations at the current surface
position.

The different material fields are in principle evaluated independently and at the renderer algorithms sole
discretion. The evaluation of the fields in the material_geometry structure though have the potential to
change the renderer state described in Section 19, for example, state::normal, and thus can influence the
evaluation results of other fields that are evaluated later. The relevant evaluation orders are as follows:
The geometry fields are evaluated before all surface fields. Within the geometry fields, displacement is
evaluated first, cutout_opacity second, and normal last.

Other fields of the MDL material, such as ior, volume, or geometry, do not influence hair shading.

The float3 vectors of the material_geometry structure are defined in the internal space of the renderer.
The state functions for coordinate space transformations, see Section 19.2, allow the use of object-space
or world-space dependent values for those vectors. Note though that a world-space dependency can have
negative performance and memory impact on renderers that support object instancing because multiple
instances with a shared object might have different displacements in world coordinates and can no longer
be shared.

13.4 Instantiating a material

postfix_expression : primary_expression

{ . . .

| argument_list

}
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argument_list : (

[named_argument {, named_argument}

| positional_argument {, positional_argument}

{, named_argument}

]

)

The material type can be used to define a material in a syntactic form that resembles a structure type
constructor including positional and named arguments. For example, to create a diffuse green material, the
surface field of the material struct is defined as a material_surface struct in which the BSDF is tinted
green.

material(

surface : material_surface(

scattering : df::diffuse_reflection_bsdf(

tint : color( 0.5, 1.0, 0.5)

)

)

)

In this example, the value of the scattering parameter to material_surface is a bsdf from the standard
MDL module df (see Section 21.1.1).

Material instantiations are used in material definitions, which are explained in the next two sections.

13.5 Encapsulating material definitions

function_declaration : . . .

| type [annotation_block ] simple_name

parameter_list [annotation_block ] = expression ;

parameter_list : ( [parameter {, parameter} ] )

parameter : type simple_name [= assignment_expression ]

[annotation_block ]

A material definition gives a name to a specific material instance. In addition, a material definition can
define input parameters that can be used within the material instantiation in expressions and function-
call arguments to initialize properties of the material model or of other already existing materials.
Parameterizing a material definition enables the encapsulation and customization of materials to create
custom material libraries. This parameterization can be thought of as analogous to the definition of a
function.

Technically, a material definition is a function definition with a, possibly empty, parameter list that returns
a material. The parameter types are restricted to those allowed for function parameters plus the material

type, see Section 13.7 for its use. In particular, material parameters shall not be of type bsdf, edf, vdf,
hair_bsdf, material_surface, material_volume, material_emission, or material_geometry.

Deviating from function definitions is the implementation of the material definition. Instead of a function
body, a material definition requires an assignment from an expression of type material. This can be
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an instantiation of the material structure type itself, the result of another material definition, or a let-
expression as explained in Section 13.8.

The following example uses the previous material instance for a diffuse green material and gives it a name
without parameters:

material green_material()

= material(

surface : material_surface(

scattering : df::diffuse_reflection_bsdf(

tint : color( 0.5, 1.0, 0.5)

)

)

)

The following example extends the previous example to a more generic diffuse material with a tint

parameter in the signature. The tint parameter input is used to set the equally-named tint parameter of
the df::diffuse_reflection_bsdf:

material diffuse_material( color tint = color( 1.0))

= material(

surface : material_surface(

scattering : df::diffuse_reflection_bsdf(

tint : tint

)

)

);

Given this parameterization of tint in diffuse_material, the green_material definition—using
diffuse_material in a syntactically identical manner to calling a function—can be defined instead as:

material green_material( )

= diffuse_material( color( 0.5, 1.0, 0.5));

The tint parameter has been bound by the encapsulation, and is inaccessible by a user of green_material.

13.6 Open material definition (material variant)

function_declaration : . . .

| type [annotation_block ] simple_name

( * ) [annotation_block ] = expression ;

An open material definition functions in the same manner as the encapsulation of the previous example.
However, parameters are not encapsulated in this definition. The use of the wildcard (‘*’) hints at the idea
that all parameters available for the material on the right-hand side of the assignment remain accessible by
a user of the new material definition.
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Open material definitions can be used to define a family of materials from one material definition
using different default values for its parameters. The parameters remain accessible for later adjustments.
Open material definitions are also called material variants and are very similar to function variants from
Section 12.6.

For example, if the green material is defined as an open material definition as follows:

material green_material( * )

= diffuse_material( color( 0.5, 1.0, 0.5) );

Then, a user of the green material can define another diffuse material based on the green material changing
its tint, for example, to a light green material. This example uses again an open material definition, which
leaves the tint parameter accessible:

material light_green_material( * )

= green_material( color( 0.7, 1.0, 0.7) );

Such a refinement of an open material definition can also be done using an enclosing material definition.

13.7 Materials as material parameters

Material parameters can be of type material, which enables generic adaptor materials and the re-use
of materials and material components in other materials. The components of a material parameter are
accessed in the material definition using the dot notation for the fields of the material.

The following example provides a generic adaptor that takes a material and returns the equivalent thin-
walled material with identical front-face and back-face material properties:

material thin_walled_material( material base)

= material(

thin_walled : true,

surface : base.surface,

volume : base.volume,

geometry : base.geometry

);

The next example provides a generic material that adds a clear-coat layer to another material. Technically,
this example adds a specular reflective layer with a Fresnel blend over the base material. The Fresnel blend
is influenced through an additional ior parameter.

material add_clear_coat( float ior = 1.5,

material base )

= material(

volume : base.volume,

geometry : base.geometry,

surface : material_surface(

emission : base.surface.emission,
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scattering : fresnel_layer(

layer : specular_bsdf(),

base : base.surface.scattering,

ior : ior

)

)

);

13.8 Expression sharing in material definitions with let-expressions

let_expression : let

( variable_declaration

| { variable_declaration {variable_declaration} }

)

in unary_expression

Material definitions can become deeply nested as parameters take further material definitions as values and
they may contain common subexpressions without the ability to share them. A let-expression can help to
improve both aspects; more structural flexibility in describing material definitions and shared common
subexpressions.

A let-expression for encapsulating or open material definitions consists of a block of variable declarations
and a final expression of type material, which becomes the result of the let-expression. The scope of
the variables extends to the end of the let-expression, such that the final expression can make use of the
variable values. In general, variables can also be used in subsequent definitions of other variables in the
let-expression. Variables are read-only and cannot be re-defined in the same let-expression.

Variables in let-expression can be of any MDL type and in particular any of the following
types: texture_2d, texture_3d, texture_cube, texture_ptex, light_profile, bsdf_measurement,
material, bsdf, edf, vdf, hair_bsdf, material_surface, material_emission, material_volume, or
material_geometry.

For example, the add_clear_coatmaterial defined in the previous section can be rewritten using variables
in a let-expression to clarify the construction of the surface input to the material:

material add_clear_coat( float ior = 1.5,

material base)

= let {

bsdf coat = specular_bsdf();

bsdf coated_scattering = fresnel_layer(

layer : coat,

base : base.surface.scattering,

ior : ior

);

material_surface coated_surface(

emission : base.surface.emission,

scattering : coated_scattering

);

} in

material(
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volume : base.volume,

geometry : base.geometry,

surface : coated_surface

);

Note that the bsdf variable coat is used as the value of the layer parameter in fresnel_layer.

13.9 Conditional expressions for materials

conditional_expression : logical_or_expression [? expression : assignment_expression ]

Conditional expressions with the ternary conditional operator (‘?’) can be used in expressions of type
material, material_surface, material_emission, material_volume, material_geometry, bsdf, edf,
vdf , or hair_bsdf under the restriction that the first operand is uniform.

Such conditional expressions can for example be used to implement a material switcher that, depending on
a Boolean input parameter, selects one or the other material:

material switch_material( uniform bool condition,

material m1,

material m2)

= condition ? m1 : m2;
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14 Annotations

annotation_declaration : annotation simple_name parameter_list [annotation_block ] ;

MDL defines a mechanism called annotations to attach metadata to various components of a material or
function, as well as the material or function itself, or another annotation declaration.

Annotations must be declared before they are used. An unknown or wrongly typed annotation shall issue
a warning and will be suppressed.

An annotation is declared globally using the annotationkeyword followed by the name of the annotation,
optional annotation parameters surrounded in parenthesis, and an optional annotation block at the end.
Annotation parameters can have default initializers with constant expressions as values.

For example:

annotation annotation_example( float f, string s = "");

This declares an annotation named annotation_examplewhich accepts a float and a string parameter.

Annotations are a part of the module where they are defined and they share the name space with other
MDL identifiers, such as functions.

An annotation can be declared multiple times, called annotation overloading, provided the overloads differ
at least by the number or types of their parameters. This is similar to function overloading and overload
resolution is defined for annotations analogously to function overload resolution in Section 12.4.

14.1 Annotation application

annotation_block : [[ annotation {, annotation} ]]

annotation : qualified_name argument_list

qualified_name : [:: ] simple_name {:: simple_name}

Annotations can be applied to:

• Modules

• Packages

• Material definitions

• Function declarations

• Material and function parameters including function return values

• Annotation declarations

• Structure types and their fields

• Enumeration types and their values
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• Constants and variable declarations

• Variables in let-expressions

Annotations are placed in blocks immediately after the declaration they are annotating, and before the
opening curly brace for function definitions, structure type or enumeration type annotations. The comma-
separated list of one or more annotations is enclosed in double brackets. An individual annotation looks
like a function call with no return value where the name of the function is the annotation and the arguments
are values associated with the annotation. These values need to be constant expressions. The annotation
syntax includes positional and named arguments explained for functions in Section 12. It is not an error to
have several annotations of the same name.

An annotation block has the following form:

[[

annotation_name(param1, param2, ...),

annotation_name(param1, param2, ...),

...

]]

The annotation_example declared above can be used to annotate a material parameter as follows:

material material_example(

color p(0) [[ annotation_example( 1.5, s : "a string") ]]

)

= material(...);

Annotations can be used to attach any type of metadata, though the common case is metadata to describe
the user interface for a material or material parameter, see also the standard annotations in Section 18.

Note: The double brackets used for annotation blocks, [[ and ]], are not tokens in MDL to avoid
problems with a possible occurrence of ]] for nested array accesses. Nonetheless, annotations require that
the double brackets are not separated by any other characters including white spaces.
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15 Modules and packages

In MDL, all identifiers and all typenames live in modules with the exception of the types available as built-
in reserved words. A module defines a namespace. Declarations inside a module need to be marked for
export before they can be used outside of the module, and other modules need to import those declarations
before they can be used.

A module corresponds one-to-one to an MDL source file. The name of the module is the name of the
source file without the .mdl file extension. Note that this restricts the file names of modules that are
referenced from other modules to legal MDL identifiers.

Modules can be used as such or they can be organized in packages. A package corresponds one-to-one to
a directory containing module source files. Packages can be nested. The name of the package is the name
of the directory. Note that this restricts the names of directories that are used as packages to legal MDL
identifiers.

15.1 Import declarations

import : import qualified_import {, qualified_import} ;

| [export ] using import_path

import ( * | simple_name {, simple_name} ) ;

import_path : ( {..:: } | [.:: ] | [:: ] ) simple_name {:: simple_name}

qualified_import : import_path [:: * ]

simple_name : IDENT

A module can import individual or all declarations from other modules with import declarations, which
must be specified after the version declaration (see Section 4.1) and before all other declarations.

Depending on the particular form of the import declarations used, the imported declarations can only be
referred to by their qualified identifiers or by their unqualified identifiers. A qualified identifier is formed
by the identifier of the imported module including its optional package name, the scope operator ‘::’,
and the unqualified identifier of the declaration. Declarations that can be referred to by their unqualified
identifier can also be referred to by their qualified identifier.

The following table illustrates the four different forms of the import declaration. For the example code, it
assumes a module m with three declarations a, b, and c, and a module n with a declaration d. For the sake
of the illustration here, those declarations can be for example materials or functions.
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Import declaration Accessible declarations Description
import m::*, n::*; m::a, m::b, m::c, n::d Qualified import of all declarations from the

specified modules.
import m::a, m::b, n::d; m::a, m::b, n::d Qualified import of selected declarations

only. Other declarations from the specified
modules are inaccessible unless imported
through an additional import declaration.

using m import *; a, b, c, m::a, m::b, m::c Unqualified import of all declarations from
a module. Only one module can be specified
in an unqualified import declaration.

using m import a, b; a, b, m::a, m::b Unqualified import of selected declarations
only. Only one module can be specified in
an unqualified import declaration.

It is not an error if the same declaration is imported more than once.

The following example illustrates how a qualified import of all declarations is combined with the unqualified
import of selected declarations using the same module m from above:

import m::*;

using m import a, b;

// accessible declarations are: a, b, m::a, m::b, m::c

It is an error if a declaration of the same name is imported in the unqualified form from two different
modules.

A module must not import itself and the import-graph of all modules in a system must not contain any
cycles.

The module name can be optionally preceded by a sequence of package names separated by the scope
operator ‘::’, which forms a relative package path. Adding the scope operator ‘::’ to the beginning of a
relative package path changes it to an absolute package path. A relative package path can also use a sequence
of parent package identifiers using the two dots ‘..’ notation, or start with explicitly referring to the
current package with the single dot notation ‘.’. There can only be as many parent package identifiers as
the importing module has parent packages itself.

Qualified identifiers from modules in packages require the qualification with all packages names and the
module name as given in the import declaration, all separated by the scope operator ‘::’. Parent package
identifiers (‘..’) as well as current package identifiers (‘.’) will be omitted in the qualified identifiers.

The following example illustrates parent package identifiers and the resulting qualified identifiers. A
module in the package P1 imports another module M from a package P2 that is located next to P1:

import ..::P2::M::example_material;

//

// the qualified name of the example_material is now

// P2::M::example_material

Package and module names live in a separate namespace. In case of ambiguities other declarations are
preferred over a module.
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Relative and absolute package paths are translated to relative and absolute file paths, respectively, by
changing the scope operator ‘::’ to the forward slash ‘/’ and appending the .mdl file extension.

Modules are located in the file system using the file path search on their respective file path as defined in
Section 2.2.

15.2 Export declarations

mdl : mdl_version

{ import}

[ module annotation_block ; ]

{[export ] global_declaration}

import : import qualified_import {, qualified_import} ;

| [export ] using import_path

import ( * | simple_name {, simple_name} ) ;

All declarations of a module are private to that module unless they are prefixed with the export qualifier.

For example:

int private_function_example() { // not visible outside of module

return 1;

}

export int function_export_example() { // visible outside of module

return private_function_example();

}

For function overloads, either all overloaded versions have an export qualifier or none.

Parameter types and identifiers in default initializers of parameters of exported functions must be exported
as well. This ensures their accessibility in modules importing such functions. However, a module importing
such functions may not necessarily need to import all types, unless it uses those parameters and does not
rely on their defaults, and it may not need to import identifiers of default initializers, unless it uses them
explicitly. Furthermore, it is sufficient if such types and identifiers are exported by some module, which
must not be the same module as the one exporting the function. This is necessary for identifiers that are
imported in their qualified form from another module and cannot be re-exported.

Return types of exported functions must also be exported by some module (or be one of the builtin types).
Modules importing a function also need to import its return type if they call the function or use the type
otherwise.

Imported declarations can be exported again if they are imported in their unqualified form. The unqualified
imported declaration is part of the importing modules namespace. Exporting it makes it only visible from
this namespace and not from its originating modules namespace.

For example a module p exports two declarations from the module m, which is defined as above:

// module p
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export using m import a, b;

Another module can now import p::a and p::b without knowing about module m. For example:

// module example

using p import a;

import p::b;

// accessible declarations are: a, p::a, p::b

// while m::a and m::b remain inaccessible

A module can import the same declaration from different modules without problems:

// module example

import m::a, p::a;

// accessible declarations are: m::a, p::a

An export of an imported declaration does not create a new declaration. This is relevant for types and their
use to distinguish among function overloads, where an export of an imported type does not constitute a
new type. In continuation of the previous example with the assumption that m::a is a type, the following
function overloads will cause an error because m::a is not a different type than p::a:

int function_overload( m::a parameter);

int function_overload( p::a parameter); // ! error

It further remains an error to import the same declaration in its unqualified form from two different
modules even though one is only an export of the other. The following example illustrates this error:

// module example with error

using m import a;

using p import a; // ! error because a is imported a second time in

// unqualified form from a different module

15.3 Interaction with function overloads

If a module imports an identifier referencing a function, all overloads of that function are imported. If the
identifier is imported in its unqualified form, the module may add further overloads of that function. If
the identifier is exported from the importing module, all overloads from the imported module as well as
the added overloads must be exported.

Adding overloads to an imported function never alters the behavior of the imported overloads, or any
other imported function. For example, if an imported function a calls another function b, the behavior of
a cannot be changed by adding additional overloads to b.
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15.4 Interoperability of modules of different language versions

Modules that are implemented using a different language version of MDL can nonetheless be freely mixed
with the following restrictions:

1. If a module imports declarations from another module, both modules need to use a language version
with the same major version number.

2. If a module imports declarations from another module, those declarations must be legal in the
language version of the importing module. In particular, the name of the declared entity, its signature,
parameter names and default initializer must all be legal.

The second restriction enables forward and backwards compatibility to the extent possible. As an example,
the standard modules of MDL 1.1 contain extensions, like a new distribution function, that cannot be
imported into an MDL 1.0 module while the other declarations that came from MDL 1.0 continue to be
available for MDL 1.0 module imports.

15.5 Package structure with lead module

As an example, the module system with its package search allows the packaging of materials and functions
in a library of implementation modules underneath a package directory and a lead module of the same
name as the package at the same level as the package directory. The lead module can import all publicly
relevant declarations from the implementation modules and export them.

The directory and module structure for a module and package m with implementation modules i1, i2, and
i3 would look like this:

<search-path-root>

+--- m.mdl

+--- m

+--- i1.mdl

+--- i2.mdl

+--- i3.mdl

An example for the lead module m in the file m.mdl would be:

// lead module m

export using m::i1 import public_material_1;

export using m::i2 import public_material_2;

export using m::i3 import public_material_3;

15.6 Annotations on modules

mdl : mdl_version

{ import}

[ module annotation_block ; ]

{[export ] global_declaration}
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15.7 Modules and packages — Annotations on packages

Annotations can be applied to modules, e.g., display name, version or dependency annotations.

The optional place for annotations in modules is uniquely marked with the reserved word module followed
by an annotation block and terminated with a semicolon (‘;’). Module annotations follow the import
block (needed to declare the annotations used) and precede all other declarations.

15.7 Annotations on packages

package : mdl_version

{ import}

[ package annotation_block ; ]

Annotations can be applied to packages, e.g., display name annotations.

Packages have no unique MDL module location for annotations. Instead, package annotations reside in
their own optional file, named package.pkg, which is located inside the package directory.

The format of the package.pkg file is similar to MDL modules. It starts with a mandatory MDL version
declaration, followed by a sequence of import declarations (needed to declare the annotations used), and
ends with the place for package annotations. Those are uniquely marked with the reserved word package

followed by an annotation block and terminated with a semicolon (‘;’).

An example of a package.pkg file containing a display name for the package:

mdl 1.3;

import anno::*;

package [[ anno::display_name("Example Package") ]];
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16 Standard modules

MDL requires the following set of standard modules to be available. An import declarative with a standard
module name shall always refer to these standard modules. In the case of modules with the same name,
standard modules shall always be found before user-defined modules.

std imports all other standard modules and re-exports all declarations.

limits standard global constants for MDL limits. cf. Section 17

anno standard annotations. cf. Section 18

state standard renderer state functions. cf. Section 19

math standard library math functions and constants. cf. Section 20.1

tex standard library texture functions. cf. Section 20.3

debug standard library debugging functions. cf. Section 20.4

df standard elemental distribution functions, modifiers, and combiners. cf. Section 21

The standard std module allows to import all standard modules at once and use their declarations with in
the std scope. For example:

import std::*;

float stdlib_example() {

return std::sin( std::HALF_PI);

}
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17 Standard limits

The following standard global constants for some limits in MDL are made available through the standard
limits module (Section 16). For example, the limits module can be imported as any other module and
all the regular scoping and shadowing rules apply:

import limits::*;

const float FLOAT_MIN The smallest positive normalized float value supported by the
current platform.

const float FLOAT_MAX The largest float value supported by the current platform.

const double DOUBLE_MIN The smallest positive normalized double value supported by the
current platform.

const double DOUBLE_MAX The largest double value supported by the current platform.

const int INT_MIN The smallest int value supported by the current platform.

const int INT_MAX The largest int value supported by the current platform.
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18 Standard annotations

MDL defines a set of standard annotations to attach metadata to various components of a material or
function, as well as the material or function itself.

Annotations need to be declared before they can be used, see Section 14. The standard annotations are
declared in the standard anno module (Section 16). For example, the anno module can be imported as any
other module and all the regular scoping and shadowing rules apply:

import anno::*;

The following are the provided standard annotations to represent common metadata:

soft_range(int min, int max)

soft_range(int2 min, int2 max)

soft_range(int3 min, int3 max)

soft_range(int4 min, int4 max)

soft_range(float min, float max)

soft_range(float2 min, float2 max)

soft_range(float3 min, float3 max)

soft_range(float4 min, float4 max)

soft_range(double min, double max)

soft_range(double2 min, double2 max)

soft_range(double3 min, double3 max)

soft_range(double4 min, double4 max)

soft_range(color min, color max)

Specifies a range of useful values for the parameter, however
the parameter value can exceed this range. Vector values are
compared component-wise.

min – The minimum value of the range.

max – The maximum value of the range.

hard_range(int min, int max)

hard_range(int2 min, int2 max)

hard_range(int3 min, int3 max)

hard_range(int4 min, int4 max)

hard_range(float min, float max)

hard_range(float2 min, float2 max)

hard_range(float3 min, float3 max)

hard_range(float4 min, float4 max)

hard_range(double min, double max)

hard_range(double2 min, double2 max)

hard_range(double3 min, double3 max)

hard_range(double4 min, double4 max)

hard_range(color min, color max)

Specifies bounds for the parameter that cannot be exceeded.
Vector values are compared component-wise.

min – The minimum value of the range.

max – The maximum value of the range.

display_name( string name) Specifies a name to use when the element is displayed in a
user interface.
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in_group(

string group)

in_group(

string group,

string subgroup)

in_group(

string group,

string subgroup,

string subsubgroup)

Specifies that a material, function, or parameter is in a group or nested
subgroup for presentational purposes in a user interface.

ui_order(

int order)

Specifies the order in which a user interface should present the parameters.
Parameters with lower order values should be displayed first. The default
order value is zero and a group has the smallest order of its contained
parameters or subgroups. Parameters of equal order number remain in
their order of definition.

enable_if(

string condition)

Specifies that an input parameter only has an effect if the Boolean expres-
sion given by the condition string evaluates to true. If it evaluates to
false, a user interface could, for example, gray out the representation of
the input parameter and disable editing it.

The condition may also evaluate to the symbolic not-a-value (NaV) rep-
resentation, in which case an integration should not disable parameter
editing.

An integration may have only limited parsing or evaluation capabilities
for the condition string. If it fails to parse or evaluate the condition, it
shall use NaV as the evaluation result. Also the condition may not be
evaluable, if it depends on varying state properties.

The condition string is a string literal containing an enable-if-condition,
which is a restricted MDL expression (Section 6.4) where each sub-
expression is:

• a constant expression (Section 6.5),

• the name of another parameter of the same function or ma-
terial definition, whose type must be one of the types per-
mitted for constant expressions (Section 6.5), texture_2d,
texture_3d, texture_cube, texture_ptex, light_profile, or
bsdf_measurement,

• a call to one of the functions in the standard math module
(Section 20.2),

• a call to one of the tex::texture_isvalid functions (Sec-
tion 20.3), the df::light_profile_isvalid function (Sec-
tion 21.2), or the df::bsdf_measurement_isvalid function (Sec-
tion 21.1.4), or

• one of the built-in operators “&&”, “||”, “<”, “&”, “|”, “^”, “<=”,
“==”, “!=”, “>=”, “>”, “<<”, “>>”, “>>>”, “+”, “-”, “*”, “/”, “%”,
“!”, “~”, “.”, or “[]”.
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The references to other parameters of texture, light profile, or measured
BSDF type can only be used as an argument to the respective isvalid-
functions.

The expression is evaluated like an MDL expression. A parameter name
evaluates to its current literal value, or NaV if it has none, for example,
if it is connected to a non-constant function call result. The result of an
expression becomes NaV, if one of its operands is NaV, except for the
following evaluations of the && and || operators: false && NaV becomes
false, NaV && false becomes false, true || NaV becomes true, and NaV ||

true becomes true.

Example annotations are:

anno::enable_if("is_transparent")

anno::enable_if("is_transparent==true && transparency>0")

Note: This annotation is a hint to the integration. It is not a require-
ment for a compiler to check if the condition corresponds to the actual
dependencies in the MDL program code.

hidden() Specifies that the element should not be visible in an application’s user
interface.

description(

string description)

Specifies a description of the element. An application providing a user
interface for the element can use this text to provide a more detailed
description beyond the display name.

thumbnail(

string name)

Specifies a preview image for a material or a function. The parameter name
needs to contain a valid file path as defined in Section 2.2, which needs
to reference an image file in the JPEG or PNG file format as defined in
Section 2.3. A square image resolution of a minimum of 256× 256 pixel is
recommended.

author(

string name)

Specifies the name of the material or function author. Multiple authors
are specified with multiple annotations.

contributor(

string name)

Specifies the name of a contributing material or function author. Multiple
contributors are specified with multiple annotations.

copyright_notice(

string copyright)

Specifies copyright information.

created(

int year,

int month,

int day,

string notes)

Specifies the date on which a material or function was created along with
a string to hold creation notes.

modified(

int year,

int month,

int day,

string notes)

Specifies a date on which a material or function was modified along with
a string to hold notes related to the modification.
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version(

int major,

int minor,

int patch,

string prerelease = "")

Specifies the version of a module following the Semantic Versioning
2.0.0 [3], omitting build metadata.

dependency(

string module_name,

int major,

int minor,

int patch,

string prerelease = "")

Specifies a dependency of the module’s contents on another module named
module_name following the naming convention of the import declarations
(see 15.1). The other module needs to be part of an import statement.
Multiple dependency annotations are used to express multiple dependen-
cies. A compiler or runtime shall issue a warning for modules whose
dependencies are not satisfied.

The version major.minor.patch-prerelease specifies the minimum ver-
sion, following the Semantic Versioning 2.0.0 [3], that the referenced mod-
ule must have to satisfy the dependency. In particular, the dependency
is satisfied if the referenced module’s version has the same major number
and its minor number, patch number, and pre-release modifier compare
equal or higher to the version requested.

For example, a module pkg/example.mdlwith this version annotation

anno::version( 2, 1, 3)

works fine for modules that have dependency annotations as follows:

anno::dependency( "pkg::example", 2, 0, 1)

anno::dependency( "::pkg::example", 2, 1, 3)

And it warns with modules that have dependency annotations as fol-
lows, one for a too high version number and one for a non-matching
major number:

anno::dependency( "pkg::example", 2, 1, 4) //! warn

anno::dependency( "::pkg::example", 1, 1, 3) //! warn

The standard libraries have no version annotation. They are implicitly
versioned by the MDL language version and cannot be listed in module
dependency annotations.

key_words(

string[] words)

Specifies a list of keywords related to a material or function. These
keywords can be used to search libraries of materials or functions.

unused()

unused(

string description)

Specifies that the annotated element is not used in the implementation.
This can be used to suppress compiler warnings about unused elements.
The variant with the description text can be used to give an additional
explanation why the element is not used, such as "deprecated" or
"reserved for future use", which may be shown in user interfaces.
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deprecated()

deprecated(

string description)

Specifies that the annotated element is deprecated. This can be used in an
application and by the compiler to warn a user about the use of deprecated
elements. The variant with the description text can be used to give an
additional explanation.

usage(

string hint)

Provides usage hints on materials, function return types, function parame-
ters and material parameters. Multiple hints can be provided with multiple
annotations. A user interface can offer preferred functions for the connec-
tion to a parameter if the function return type has a hint in common with
the parameter or it can offer a more customized user interface control for
parameter editing.

The following list defines recommended usage hints, but systems can
choose arbirary usage hints:

Usage hint Type Description
anisotropy float the range from 0.0 to 1.0 goes

from no to full anisotropy
anisotropy_rotation float the range from 0.0 to 1.0 de-

fines a full turn
base_color color base color
density float strength of volumetric scatter-

ing and absorption effects
diffuse_color color diffuse color
displacement float / float3 distance for displacement

mapping
displacement_scale float scale for displacement map-

ping
emission_color color emission color
glossiness float glossiness
ior float / color index of refraction
metalness float ratio of metallic vs dielectric

behavior
normal float3 normal vector for normal

mapping
roughness float surface roughness of glossy

contribution
occlusion float baked occlusion
opacity float opacity
transparency float transmission
specularity float amount of specular contribu-

tion
specular_color color specular color
transmission_color color transmission color
uv float2 / float3 uv coordinate
volume_color color volumetric color
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origin(

string name)

Used on copied, cloned, or otherwise refactored declarations to reference
the original declaration. It is applicable on material definitions, function
declarations, annotation declarations, structure type declarations, enumer-
ation type declarations, or constant declarations. The original declaration
is specified with its fully qualified name. Note that the name does not
include the full signature, such as in the case of materials, functions, or
annotations.

Note: The MDL Encapsulated file format (Section 25) uses this anno-
tation to refer to the original declarations of the encapsulated elements.
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19 Renderer state

Materials and functions need access to some common values available in the renderer, such as some varying
aspect of the current fragment being shaded or a uniform property of the render pass. MDL gives access
to these values through a set of global functions, the renderer state functions, or state functions for short.

Note: The renderer state is thus immutable and cannot be changed in a function or material. However,
some material properties influence the renderer state of later stages, see Section 13 for details.

Although the renderer state cannot be defined in MDL itself, it is made available through one of the
standard MDL modules, see Section 16. The state module can be imported as any other module, for
example with:

import state::*;

All the regular scoping and shadowing rules apply. For example, this allows to access the normal state
function using its fully qualified name in case it has been shadowed as in the following example:

material normal_parameter_example( float3 normal = state::normal())

= material( ...);

MDL materials and functions are used in the renderer in different contexts, for example, when rendering a
surface or when rendering a volume. Not all state functions are well defined in all contexts. Yet, in order to
enable generic functions, for example, for texture lookups on surfaces as well as for environments, all state
functions are always defined and return sensible defaults in such occasions. The defaults are documented
in detail below.

Most state functions are varying and only a few are uniform such as transform(...). All state functions
are documented with their explicit uniform or varying property below.

19.1 Basic renderer state values

The following is a list of all basic renderer state values. Note that all spatial values are in internal space,
see 19.2 for coordinate space transformation functions.

float3 position() varying The intersection point on the surface or the sample point in the
volume. The default value is zero for contexts without a position,
such as the environment.

float3 normal() varying The shading surface normal as a unit-length vector. The value
is a unit-length vector facing to the origin if the context is the
environment. The default value is zero for contexts without a
normal, which are volumes and hair shading.

float3 geometry_normal() varying The true geometric surface normal for the current geometry as a
unit-length vector. The value is a unit-length vector facing to the
origin if the context is the environment. The default value is zero
for contexts without a normal, which are volumes and hair shading.

float3 motion() varying Tangential motion vector.
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int texture_space_max() varying The maximal number of texture spaces available.

float3 texture_coordinate(

int index

) varying

The texture space at the given index where 0 ≤ index <

texture space max(). An index outside this range yields undefined
behavior.

In hair shading, texture spaces contain the following values:

• texture_coordinate(0).x: The normalized position of the
intersection point along the hair fiber in the range from zero
for the root of the fiber to one for the tip of the fiber.

• texture_coordinate(0).y: The normalized position of the
intersection point around the hair fiber in the range from zero
to one.

• texture_coordinate(0).z: The thickness of the hair fiber at
the intersection point in internal space.

• texture_coordinate(1): A position of the root of the hair
fiber, for example, from a texture space of a surface supporting
the hair fibers. This position is constant for a fiber.

float3 texture_tangent_u(

int index

) varying

The array of tangent vectors for each texture space. The tangent
vector is a unit length vector in the plane defined by the surface
normal, which points in the direction of the projection of the
tangent to the positive u axis of the corresponding texture space
onto the plane defined by the original surface normal. Not provided
in hair shading and set to zero in this case.

float3 texture_tangent_v(

int index

) varying

The array of bitangent vectors for each texture space. The bitangent
vector is a unit length vector in the plane defined by the surface
normal, which points in the general direction of the positive v axis
of the corresponding texture space, but is orthogonal to both the
original surface normal and the tangent of the corresponding texture
space. Not provided in hair shading and set to zero in this case.

float3x3 tangent_space(

int index

) varying

The array of tangent space matrices for each texture space. These
matrices are available as a convenience and are constructed from
the texture_tangent_u, texture_tangent_v, and surface normal
as the x, y, and z axis of the coordinate system, respectively. Not
provided in hair shading and set to zero in this case.

float3 geometry_tangent_u(

int index

) varying

Array of geometry tangents. Together with geometry_normal and
geometry_tangent_v, this forms a number of orthonormal bases.
The orientation of each basis around the normal is the same as that
of tangent_space. Not provided in hair shading and set to zero in
this case.

float3 geometry_tangent_v(

int index

) varying

Array of geometry bitangents. Together withgeometry_normal and
geometry_tangent_u, this forms a number of orthonormal bases.
Not provided in hair shading and set to zero in this case.
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int object_id() uniform Returns the object ID provided in a scene, and zero if none was
given or for the environment.

float3 direction() varying Lookup direction in the context of an environment lookup and
float3(0.0) in all other contexts.

float animation_time() varying The time of the current sample in seconds, including the time within
a shutter interval.

const int WAVELENGTH_BASE_MAX The number of wavelengths returned in the result ofwavelength_base().

float[WAVELENGTH_BASE_MAX]

wavelength_base() uniform

Array of wavelengths, in increasing order, that are recommended
when constructing spectra to achieve best approximation results
(see Section 6.11.1). Wavelengths are given in nanometers [nm].
Each wavelength λ is between the shortest and longest wavelengths
considered for spectra, defined by limits::WAVELENGTH_MIN≤ λ ≤

limits::WAVELENGTH_MAX.

float wavelength_min() uniform The smallest float value that the current platform allows for
representing wavelengths for the color type and its related
functions.

float wavelength_max() uniform The largest float value that the current platform allows for
representing wavelengths for the color type and its related
functions.

19.2 Coordinate space transformations

The state provides functions to transform spatial values—namely scales, vectors, points and normals—
between the following coordinate spaces:

• internal space

• object space

• world space

Spatial values returned by state functions are always provided in internal space unless noted otherwise.
Internal space is implementation dependent and can vary across different platforms. If a material or
function can perform calculations independently of the coordinate system then it can operate with those
values directly, otherwise it will need to transform them into a known space.

enum coordinate_space {

coordinate_internal,

coordinate_object,

coordinate_world

};

The coordinate space determines in which space coordinates and
other spatial values are represented and in which space their
representation is transformed into.
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float4x4 transform(

coordinate_space from,

coordinate_space to

) uniform

Returns a transformation matrix to transform from one space
to another. The from and to parameters can be any of the
coordinate_space enumeration values.

The matrix returned from transform() assumes that vectors are
considered to be column vectors and multiplied on the right-hand
side of the matrix. In other words, the translation components Tx,
Ty, and Tz of a translation-only transformation are located in the
following positions of the returned matrix:









1 0 0 Tx

0 1 0 Ty

0 0 1 Tz

0 0 0 1









See also Section 6.9 for the other relevant conventions on matrices.

float3 transform_point(

coordinate_space from,

coordinate_space to,

float3 point

) uniform

Transforms a point from one coordinate system to another. The
from and to parameters can be any of the coordinate_space

enumeration values.

float3 transform_vector(

coordinate_space from,

coordinate_space to,

float3 vector

) uniform

Transforms a vector from one coordinate system to another. The
translation component of the coordinate systems is ignored when
transforming the vector. The from and to parameters can be any of
the coordinate_space enumeration values.

float3 transform_normal(

coordinate_space from,

coordinate_space to,

float3 normal

) uniform

Transform a surface normal from one coordinate system to another.
As with vector transformations, the translation component of the
coordinate systems is ignored. Additionally the transpose of the
inverse transformation matrix is used to properly transform the
surface normal. The from and to parameters can be any of the
coordinate_space enumeration values.

float transform_scale(

coordinate_space from,

coordinate_space to,

float scale

) uniform

Transforms a scale measure from one coordinate system to
another. Only the uniform scale factor of the coordinate system
transformation is used. If the transformation is not a similarity
transform, the average of the non-uniform scale factors is used.
The from and to parameters can be any of the coordinate_space

enumeration values.

Note that for all transform functions, if the from argument is coordinate_internal then the coordinates
to transform should be a return value of a state function or a value that has been previously transformed
into internal space. Otherwise, the result is undefined and may differ across implementations.

For example the result of:
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transform_point( coordinate_internal,

coordinate_world,

float3(1,0,0)) // ! undefined behavior

is undefined since the definition of the coordinates (1,0,0) in internal space is implementation dependent.

The world space is in scene units, which can vary from integration to integration and scene to scene. The
following state functions offer conversion factors between scene units and meters:

float meters_per_scene_unit() uniform Returns the distance of one scene unit in meters.

float scene_units_per_meter() uniform Returns the distance of one meter in scene units.

19.3 Rounded corners state function

float3 rounded_corner_normal(

uniform float radius = 0.0,

uniform bool across_materials = false,

uniform float roundness = 1.0

) varying

Returns a modified shading normal state::normal
that is changed near surface mesh edges to blend
smoothly into the shading normal of neighboring
facets. The result of this function can be used to set
the normal field of the material_geometry struc-
ture, which results in a perceived look of smooth
edges instead of a facetted look with hard edges. It
can as well be combined with normal perturbation
schemes.

radius – influence radius around the edges within
which the normal is modified. The radius is spec-
ified in meters in world space. A radius of 0.0
disables the rounded corners and this function just
returns state::normal.

across_materials – normal smoothing happens
only between facets of equal material, unless this
parameter is set true, in which case the smoothing
happens between facets irrespective of their mate-
rials.

roundness – determines how round the edge will
look. The valid range is between 0.0 and 1.0. A
value of 0.0 chamfers the edge and a value of 1.0
gives a rounded edge.
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20 Standard library functions

MDL defines a standard library of built-in functions and a few constants. Many of these functions are
overloaded to support different MDL scalar and vector data types. A list of overloaded versions of each
standard library function is included with each description. The following generic types are used in these
function signatures to abbreviate common overloads of vector types and floating-point types.

Generic type Represents one of these types
boolN bool, bool2, bool3, bool4
intN int, int2, int3, int4
float float, double
floatN float, float2, float3, float4, double, double2, double3, double4

For any specific function signature, if more than one generic type is used to represent a vector type, all of
those vector types need to have the same number of fields, and if more than one generic type is used to
represent a floating-point type, all of those types need to be of single precision or double precision.

The vector versions of the standard library functions operate component-wise unless noted otherwise. The
description is per component.

The standard library functions and constants are made available through the standard MDL modules, see
Section 16 and the individual sections below. For example, the math module can be imported as any other
module:

import math::*;

All the regular scoping and shadowing rules apply. For example, this allows to access the abs standard
math function using its fully qualified name in case it has been in shadowed as in the following example:

float stdlib_shadowing_example( float max) {

return math::max( 1.0, max);

}

20.1 Math constants

The following standard math constants are made available through the standard math module (Section 16):

import math::*;

const float PI = 3.14159265358979323846f

const float TWO_PI = 6.28318530717958647692f

const float HALF_PI = 1.57079632679489661923f
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20.2 Math functions

The following standard math functions, including some geometric and color related functions, are made
available through the standard math module (Section 16):

import math::*;

All standard math functions are uniform and not documented as such explicitly below.

intN abs( intN a)

floatN abs( floatN a)

color abs( color a)

Returns the absolute value.

floatN acos( floatN a) Returns the arc cosine.

bool all( boolN a) Returns true if all components are true and false otherwise.

bool any( boolN a) Returns true if any component is true and false otherwise.

floatN asin( floatN a) Returns the arc sine.

floatN atan( floatN a) Returns the arc tangent.

floatN atan2( floatN y, floatN x) Returns the arc tangent of y/x. The signs of y and x are used to
determine the quadrant of the result.

float average( floatN a)

float average( color a)

Returns the average of the vector elements or the color.

color blackbody(

float temperature)

Returns the color for a blackbody radiator at the given temperature
in Kelvin.

floatN ceil( floatN a) Returns the nearest integer that is greater than or equal to the value.

intN clamp( intN a, intN min, intN max)

intN clamp( intN a, int min, intN max)

intN clamp( intN a, intN min, int max)

intN clamp( intN a, int min, int max)

floatN clamp( floatN a, floatN min, floatN max)

floatN clamp( floatN a, float min, floatN max)

floatN clamp( floatN a, floatN min, float max)

floatN clamp( floatN a, float min, float max)

color clamp( color a, color min, color max)

color clamp( color a, float min, color max)

color clamp( color a, color min, float max)

color clamp( color a, float min, float max)

Returns min if a is less than min, max if a is greater
than max, and a otherwise.

floatN cos( floatN a) Returns the cosine. Angles specified by a are in radians.

float3 cross(

float3 a,

float3 b)

Returns the cross product of a and b.

floatN degrees( floatN a) Converts the value from radians to degrees, i.e, returns 180 · a/π.
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float distance( floatN a, floatN b)Returns the Euclidean distance between a and b.

float dot( floatN a, floatN b) Returns the dot product of a and b.

color emission_color(

color value)

color emission_color(

float[<N>] wavelengths,

float[N] amplitudes)

The first variant re-interprets a unitless reflectivity in its color value
as an emission intensity. The second variant returns the color best
representing the light emission intensity defined by the two float

arrays that define samples for a smooth spectrum representation.
The first array contains the wavelengths in increasing order and the
second array, which must be of equal size, contains the amplitude
values at these wavelengths. The construction may choose an
approximation to represent the spectrum.

float eval_at_wavelength(

color a,

float wavelength)

Evaluates and returns the value of a at the given wave-
length, where the wavelength argument is given in nanome-
ters [nm] and limits::WAVELENGTH_MIN ≤ wavelength ≤

limits::WAVELENGTH_MAX.

floatN exp( floatN a)

color exp( color a)

Returns the constant e raised to the power a.

floatN exp2( floatN a)

color exp2( color a)

Returns the value two raised to the power a.

floatN floor( floatN a) Returns the nearest integer that is less than or equal to the value.

floatN fmod( floatN a, floatN b)

floatN fmod( floatN a, float b)

Returns a modulo b, in other words, the remainder of a/b. The
result has the same sign as a.

floatN frac( floatN a) Returns the positive fractional part.

boolN isnan( floatN a) Returns true if the value does not represent a valid number and
falseotherwise. This can occur as the result of an invalid operation
such as taking the square root of a negative number.

boolN isfinite( floatN a) Returns true if the value represents a valid and finite number, and
false otherwise.

float length( floatN a) Returns the length of a.

floatN lerp( floatN a, floatN b, floatN l)

floatN lerp( floatN a, floatN b, float l)

color lerp( color a, color b, color l)

color lerp( color a, color b, float l)

Returns the linear interpolation between a and b

based on the value of l, such that the result is
a · (1 − l) + b · l.

floatN log( floatN a)

color log( color x)

Computes the natural logarithm.

floatN log2( floatN a)

color log2( color x)

Computes the base two logarithm.
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float luminance( float3 a)

float luminance( color a)

Returns the Y channel (luminance) of a when interpreting a in the
CIE XYZ color space. The color space of a is implementation
dependent if a is of type color and assumes the linear sRGB color
space if a is of type float3. In the latter case, the luminance is then
equal to 0.212671 · a.x+ 0.715160 · a.y+ 0.072169 · a.z.

intN max( intN a, intN b)

intN max( int a, intN b)

intN max( intN a, int b)

floatN max( floatN a, floatN b)

floatN max( float a, floatN b)

floatN max( floatN a, float b)

color max( color a, color b)

color max( float a, color b)

color max( color a, float b)

Returns the maximum of a and b.

float max_value( floatN a)

float max_value( color a)

Returns the largest value of a.

float max_value_wavelength(

color a)

Returns the smallest wavelength in [nm] at which the largest value
lies.

intN min( intN a, intN b)

intN min( int a, intN b)

intN min( intN a, int b)

floatN min( floatN a, floatN b)

floatN min( float a, floatN b)

floatN min( floatN a, float b)

color min( color a, color b)

color min( float a, color b)

color min( color a, float b)

Returns the minimum of a and b.

float min_value( floatN a)

float min_value( color a)

Returns the smallest value of a.

float min_value_wavelength(

color a)

Returns the smallest wavelength in [nm] at which the smallest value
lies.

floatN[2] modf( floatN a) Returns an array with the integral part of a as first element and
the fractional part of a as second element. Both the fractional and
integer parts have the same sign as a.

floatN normalize( floatN a) Scales a by the reciprocal of its length to give it a length of 1. If the
length of a is zero the result of normalize(a) is undefined.

intN pow( intN a, intN b)

intN pow( intN a, int b)

floatN pow( floatN a, floatN b)

floatN pow( floatN a, float b)

color pow( color a, color b)

color pow( color a, float b)

Returns a raised to the power b. Floating-point value a must not be
negative, while for the overloaded functions with integer exponent
b, the integer value a may be negative.

floatN radians( floatN a) Converts the value from degrees to radians, i.e, returns π · a/180.
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floatN round( floatN a) Returns the nearest integer value for a.

floatN rsqrt( floatN a)

color rsqrt( color a)

Returns the reciprocal of the square root of a.

floatN saturate( floatN a)

color saturate( color a)

Clamps a so that 0.0 ≤ a ≤ 1.0.

intN sign( intN a)

floatN sign( floatN a)

Returns 1 if a is greater than 0, -1 if a is less than 0, and 0 otherwise.

floatN sin( floatN a) Returns the sine of a. Angles specified by a are in radians.

floatN[2] sincos( floatN a) Returns an array with the sine of a as first element and the cosine
of a as second element. Angles specified by a are in radians.

floatN smoothstep( floatN a, floatN b, floatN l)

floatN smoothstep( floatN a, floatN b, float l)

Returns 0 if l is less than a and 1 if l is greater than
b. A smooth curve is applied in-between so that
the return value varies continuously from 0 to 1 as
l varies from a to b.

floatN sqrt( floatN a)

color sqrt( color a)

Returns the square root of a

floatN step( floatN a, floatN b) Returns 0 if b is less than a and 1 otherwise.

floatN tan( floatN a) Returns the tangent of a. Angles specified by a are in radians.

float2x2 transpose( float2x2 a)

float2x3 transpose( float3x2 a)

float3x2 transpose( float2x3 a)

float3x3 transpose( float3x3 a)

float4x2 transpose( float2x4 a)

float2x4 transpose( float4x2 a)

float3x4 transpose( float4x3 a)

float4x3 transpose( float3x4 a)

float4x4 transpose( float4x4 a)

double2x2 transpose( double2x2 a)

double2x3 transpose( double3x2 a)

double3x2 transpose( double2x3 a)

double3x3 transpose( double3x3 a)

double4x2 transpose( double2x4 a)

double2x4 transpose( double4x2 a)

double3x4 transpose( double4x3 a)

double4x3 transpose( double3x4 a)

double4x4 transpose( double4x4 a)

Computes the transpose of the matrix a.

20.3 Texture

The following standard texture functions are made available through the standard tex module (Section 16):
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import tex::*;

The uniform or varying modifier for the standard texture functions is documented explicitly.

int width(

uniform texture_2d tex,

int2 uv_tile = int2(0,0)

) uniform

int width( uniform texture_3d tex) uniform

int width( uniform texture_cube tex) uniform

The width of the texture tex at the given uv tile in
pixels along the u-direction in texture space. The
width is zero for an invalid texture reference or if
the uv-tile does not exist.

int height(

uniform texture_2d tex,

int2 uv_tile = int2(0,0)

) uniform

int height( uniform texture_3d tex) uniform

int height( uniform texture_cube tex) uniform

The height of the texture tex at the given uv tile in
pixels along the v-direction in texture space. The
height is zero for an invalid texture reference or if
the uv-tile does not exist.

int depth( uniform texture_3d tex) uniform The depth of the texture tex in pixels along the w-
direction in texture space. The depth is zero for an
invalid texture reference.

bool texture_isvalid( uniform texture_2d tex) uniform

bool texture_isvalid( uniform texture_3d tex) uniform

bool texture_isvalid( uniform texture_cube tex) uniform

bool texture_isvalid( uniform texture_ptex tex) uniform

Returnstrue if the value oftex is a valid
texture reference and false otherwise.

The standard texture lookup functions are provided in different variants, which differ only in the lookup
type ltype, which is used as part of the function name and which determines the return type of the lookup
function. The generic lookup type ltype can be any of the following types:

Generic type Represents one of these types
ltype float, float2, float3, float4, color

The standard texture lookup function for the texture_ptex is varying and the other standard texture
functions are uniform. Note that their result is usually varying because of the use of a varying state
value for their lookup coordinate parameter. All functions are documented accordingly with their explicit
uniform or varying property below.

enum gamma_mode {

gamma_default,

gamma_linear,

gamma_srgb

};

The gamma mode determines whether a texture can be used as is in the
linear workflow of the renderer or if it needs to be inverse-gamma cor-
rected. The value gamma_default leaves this decision up to the texture
itself. The value gamma_linear defines that the texture can be used as is.
The value gamma_srgb defines that the texture uses the gamma compres-
sion of the sRGB standard, which is close to a gamma factor of 2.2, and the
texture needs to be inverse-gamma corrected by the integration before use.

Note: This mode is only used in the texture constructors that create a
texture from a file path as defined in Section 6.12.1.
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enum wrap_mode {

wrap_clamp,

wrap_repeat,

wrap_mirrored_repeat,

wrap_clip

};

The wrap mode determines the texture lookup behavior if a lookup
coordinate is exceeding the normalized half-open texture space range
of [0, 1): wrap_clamp clamps the lookup coordinate to the range,
wrap_repeat takes the fractional part of the lookup coordinate effectively
repeating the texture along this coordinate axis, wrap_mirrored_repeat
is like wrap_repeat but takes one minus the fractional part every other
interval to mirror every second instance of the texture, and wrap_clip

makes the texture lookup return zero for texture coordinates outside of
the range.

ltype lookup_ltype(

uniform texture_2d tex,

float2 coord,

uniform wrap_mode wrap_u = wrap_repeat,

uniform wrap_mode wrap_v = wrap_repeat,

uniform float2 crop_u = float2(0.0, 1.0),

uniform float2 crop_v = float2(0.0, 1.0)

) uniform

Returns the sampled texture value for the two-
dimensional coordinates coord given in normal-
ized texture space in the range [0, 1)2, where the
wrap modes define the behavior for coordinates
outside of that range. The crop parameters further
define a sub-range on the texture that is actually
used and that defines the normalized texture space
in the range [0, 1)2. The crop parameter defaults
float2(0.0, 1.0) corresponds to the whole tex-
ture in the corresponding axis.

The wrap mode and crop parameters are ignored
if the texture references a uv-tileset. In this case,
floor(coord) defines the index to select the tile
in the uv-tileset and coord-floor(coord) defines
the uv coordinates to look up the sampled texture
value in the normalized texture space in the range
[0, 1)2 for the selected tile.

A lookup on an invalid texture reference or a non-
existing uv-tile returns zero.

ltype lookup_ltype(

uniform texture_3d tex,

float3 coord,

uniform wrap_mode wrap_u = wrap_repeat,

uniform wrap_mode wrap_v = wrap_repeat,

uniform wrap_mode wrap_w = wrap_repeat,

uniform float2 crop_u = float2(0.0, 1.0),

uniform float2 crop_v = float2(0.0, 1.0),

uniform float2 crop_w = float2(0.0, 1.0)

) uniform

Returns the sampled texture value for the three-
dimensional coordinatescoordgiven in normalized
texture space in the range [0, 1)3, where the wrap
modes define the behavior for coordinates outside
of that range. The crop parameters further
define a sub-range on the texture that is actually
used and that defines the normalized texture
space in the range [0, 1)3. The crop parameter
defaults float2(0.0, 1.0) corresponds to the
whole texture in the corresponding axis. A lookup
on an invalid texture reference returns zero.

ltype lookup_ltype(

uniform texture_cube tex

float3 coord

) uniform

Returns the sampled texture value for a cube
texture lookup in the direction given by the three-
dimensional vector coord. A lookup on an invalid
texture reference returns zero.
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ltype lookup_ltype(

uniform texture_ptex tex,

int channel = 0

) varying

Returns the sampled PTEX texture value for the
current surface position starting at the channel
provided with the channel parameter. A lookup
on an invalid texture reference or beyond available
channels returns zero.

ltype texel_ltype(

uniform texture_2d tex,

int2 coord,

int2 uv_tile = int2(0,0)

) uniform

Returns the raw texture value for the two-
dimensional coordinates coord in the valid range [0,

width(tex,uv_tile)−1]×[0,height(tex,uv_tile)

−1]. A lookup on an invalid texture reference, a
non-existing uv-tile, or outside the valid range re-
turns zero.

ltype texel_ltype(

uniform texture_3d tex,

int3 coord

) uniform

Returns the raw texture value for the three-
dimensional coordinates coord in the valid range
[0, width(tex) −1] × [0, height(tex) −1] × [0,

depth(tex) −1]. A lookup on an invalid texture
reference or outside the valid range returns zero.

20.4 Debugging functions

The following standard debugging functions are made available through the standard debug module
(Section 16):

import debug::*;

All standard debug functions are uniform and not documented as such explicitly below. These functions
have no observable effect for the MDL program except the possible end of the program execution. A
system can ignore these functions and replace them with the value true.

bool print( boolN a)

bool print( intN a)

bool print( floatN a)

bool print( color a)

bool print( string a)

Prints the value of a. Returns true.

bool assert(

bool condition,

string reason

)

Aborts program execution if condition is false and prints the
reason text. Returns true otherwise.

bool breakpoint() Establishes a breakpoint at this position for a debugger. Returns
true.
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21 Standard distribution functions

MDL defines a standard set of elemental distribution functions, modifiers, and combiners that are used in
defining materials in Section 13. The distribution functions define light interaction at a boundary (reflection
and transmission), light scattering in participating media, and the emission of light from a surface.

The distributions, modifiers, and combiners are made available in MDL programs by loading the df

module, in the same manner as the modules described in Section 15:

import df::*;

The regular scoping and shadowing rules apply to all symbols imported from the df module. However,
unlike the other modules, the df module is not written in MDL; it requires a tight coupling with the
rendering system that is outside the scope of MDL itself.

21.1 Bidirectional scattering distribution functions

This section documents the elemental bidirectional scattering distribution function (BSDF) models defined in
MDL and their input parameters. Defining an instance of these BSDF models uses the syntax of a function
returning a bsdf, which is not allowed elsewhere in MDL.

Inputs have to meet some requirements to ensure energy conservation. Unless noted otherwise, the main
criterion is for color inputs to be in [0, 1]. In some cases models have to enforce additional restrictions.
Two principal approaches are possible when normalizing color inputs. First, colors may be clamped, that
is, values outside of [0, 1] are set to the boundary values. Second, colors may be divided by their maximum
value if it is larger than one. The former approach is slightly faster, while the latter avoids color shifts.

Two BSDFs (specular_bsdf and simple_glossy_bsdf) require the definition of their scattering mode,
represented by an enum parameter of the BSDF:

enum scatter_mode {

scatter_reflect,

scatter_transmit,

scatter_reflect_transmit

};

Specular modes for reflection, transmission, or both.
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21.1.1 Diffuse interaction

bsdf diffuse_reflection_bsdf (

color tint = color(1.0),

float roughness = 0.0,

uniform string handle = ""

);

Lambertian reflection extended by the Oren-Nayar microfacet model [4].

tint – Scaling factor, defined as a color, multiplied by the result of the distribution function.

roughness – Oren-Nayar roughness coefficient, simulating view-dependent diffuse reflection. Range:
[0, 1], with 0 specifying complete view independence.

handle – Name to provide access to this component for use in an MDL integration.

bsdf diffuse_transmission_bsdf(

color tint = color(1.0),

uniform string handle = ""

);

Pure diffuse transmission of light through a surface.

tint – Scaling factor, defined as a color, multiplied by the result of the distribution function.

handle – Name to provide access to this component for use in an MDL integration.

21.1.2 Specular interaction

Specular reflections and transmissions implement an idealized surface in which light is reflected in the
mirror direction or is transmitted based on the index of refraction of the boundary using Snell’s law.

bsdf specular_bsdf(

color tint = color(1.0),

uniform scatter_mode mode = scatter_reflect,

uniform string handle = ""

);

Pure specular reflection and/or transmission. Uses the reflection color in transmission mode if the ior
values indicate total interior reflection.

tint – Scaling factor, defined as a color, multiplied by the result of the distribution function.

mode – One of three values: scatter_reflect, scatter_transmit, or (for both)
scatter_reflect_transmit.

handle – Name to provide access to this component for use in an MDL integration.

21.1.3 Glossy interaction

Glossy reflections can be anisotropic and are therefore dependent upon the orientation of the surface
specified by its local coordinate system. The following two BSDFs can override this coordinate system by
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specifying the tangent in the u direction.

bsdf simple_glossy_bsdf(

float roughness_u,

float roughness_v = roughness_u,

color tint = color(1.0),

float3 tangent_u = state::texture_tangent_u(0),

uniform scatter_mode mode = scatter_reflect,

uniform string handle = ""

);

Glossy reflection and transmission based on a microfacet model [5] using a Phong distribution [6] and a
v-cavities shadowing term [7]. The Phong distribution exponent is computed as exponent = 2/roughness2.
Becomes black in transmission mode if the ior values indicate total interior reflection.

roughness_u – Roughness coefficient in the u direction. Range: [0,∞), with 0 specifying pure specular
reflection.

roughness_v – Roughness coefficient in the v direction. Range: [0,∞), with 0 specifying pure specular
reflection.

tint – Scaling factor, defined as a color, multiplied by the result of the distribution function.

tangent_u – The tangent in the u direction, in internal space.

mode – One of three values: scatter_reflect, scatter_transmit, or (for both)
scatter_reflect_transmit.

handle – Name to provide access to this component for use in an MDL integration.

bsdf backscattering_glossy_reflection_bsdf(

float roughness_u,

float roughness_v = roughness_u,

color tint = color(1.0),

float3 tangent_u = state::texture_tangent_u(0),

uniform string handle = ""

);

Backscattering glossy reflection based on the retro-reflective component of the halfway-vector disk
model using the scaling projection [8]. Since that BRDF is not symmetric, two modifications are ap-
plied. First, instead of a disk distribution p(h, ωo) centered around outgoing direction ωo, the minimum
min{p(h, ωo), p(h, ωi)} of both a distribution centered around outgoing and one centered around incoming
direction ωi is used. Second, the division by the cosine of the angle between incoming direction and
normal, cos(θi), is replaced by a division by the maximum of cosines of both incoming and outgoing direc-
tions max{cos(θi), cos(θo)}. The exponent for the disk distribution is computed as exponent = 2/roughness2.

roughness_u – Roughness coefficient in the u direction. Range: [0,∞), with 0 specifying pure specular
reflection.

roughness_v – Roughness coefficient in the v direction. Range: [0,∞), with 0 specifying pure specular
reflection.

tint – Scaling factor, defined as a color, multiplied by the result of the distribution function.

tangent_u – The tangent in the u direction, in internal space.

handle – Name to provide access to this component for use in an MDL integration.
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21.1.4 Measured interaction

Measured BSDF data can contain the measured information for the surface reflection behavior, the surface
transmission behavior, or both. The following BSDF selects those depending on the additional mode

parameter. It is an error if the mode parameter selects a mode for which no data is provided in the
measurement.

bool bsdf_measurement_isvalid(

uniform bsdf_measurement measurement

) uniform

Returns true if the value of measurement is a
valid BSDF measurement reference and false

otherwise.

bsdf measured_bsdf(

uniform bsdf_measurement measurement,

uniform float multiplier = 1.0,

uniform scatter_mode mode = scatter_reflect,

uniform string handle = ""

);

General isotropic reflection and transmission based on measured data.

measurement – Measured BSDF data.

multiplier – Non-negative factor to scale the measurement. Scaling is limited to the maximum
scale where an albedo of one is reached for a particular direction and larger factors
will not scale the measurement any further.

mode – One of three values: scatter_reflect, scatter_transmit, or (for both)
scatter_reflect_transmit.

handle – Name to provide access to this component for use in an MDL integration.

21.1.5 Alternative distribution functions

The distribution functions in the previous sections define the recommended building blocks for the
diffuse, glossy, specular, and measured surface interactions. For advanced uses, such as matching another
implementation, MDL provides the following alternative distribution functions for glossy interactions.
They have compatible parameters to the simple_glossy_bsdf distribution function from Section 21.1.3.
The first four support transmission, the last one does not.
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bsdf microfacet_beckmann_smith_bsdf(

float roughness_u,

float roughness_v = roughness_u,

color tint = color(1.0),

float3 tangent_u = state::texture_tangent_u(0),

uniform scatter_mode mode = scatter_reflect,

uniform string handle = ""

);

Glossy reflection and transmission based on a microfacet model [5] using a Beckmann distribution and a
Smith shadowing term [7]. Becomes black in transmission mode if the ior values indicate total interior
reflection.

roughness_u – Roughness coefficient in the u direction. Range: [0,∞), with 0 specifying pure specular
reflection.

roughness_v – Roughness coefficient in the v direction. Range: [0,∞), with 0 specifying pure specular
reflection.

tint – Scaling factor, defined as a color, multiplied by the result of the distribution function.

tangent_u – The tangent in the u direction, in internal space.

mode – One of three values: scatter_reflect, scatter_transmit, or (for both)
scatter_reflect_transmit.

handle – Name to provide access to this component for use in an MDL integration.

bsdf microfacet_ggx_smith_bsdf(

float roughness_u,

float roughness_v = roughness_u,

color tint = color(1.0),

float3 tangent_u = state::texture_tangent_u(0),

uniform scatter_mode mode = scatter_reflect,

uniform string handle = ""

);

Glossy reflection and transmission based on a microfacet model [5] using a GGX distribution and a Smith
shadowing term [7]. Becomes black in transmission mode if the ior values indicate total interior reflection.

roughness_u – Roughness coefficient in the u direction. Range: [0,∞), with 0 specifying pure specular
reflection.

roughness_v – Roughness coefficient in the v direction. Range: [0,∞), with 0 specifying pure specular
reflection.

tint – Scaling factor, defined as a color, multiplied by the result of the distribution function.

tangent_u – The tangent in the u direction, in internal space.

mode – One of three values: scatter_reflect, scatter_transmit, or (for both)
scatter_reflect_transmit.

handle – Name to provide access to this component for use in an MDL integration.
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bsdf microfacet_beckmann_vcavities_bsdf(

float roughness_u,

float roughness_v = roughness_u,

color tint = color(1.0),

float3 tangent_u = state::texture_tangent_u(0),

uniform scatter_mode mode = scatter_reflect,

uniform string handle = ""

);

Glossy reflection and transmission based on a microfacet model [5] using a Beckmann distribution and a
v-cavities shadowing term [7]. Becomes black in transmission mode if the ior values indicate total interior
reflection.

roughness_u – Roughness coefficient in the u direction. Range: [0,∞), with 0 specifying pure specular
reflection.

roughness_v – Roughness coefficient in the v direction. Range: [0,∞), with 0 specifying pure specular
reflection.

tint – Scaling factor, defined as a color, multiplied by the result of the distribution function.

tangent_u – The tangent in the u direction, in internal space.

mode – One of three values: scatter_reflect, scatter_transmit, or (for both)
scatter_reflect_transmit.

handle – Name to provide access to this component for use in an MDL integration.

bsdf microfacet_ggx_vcavities_bsdf(

float roughness_u,

float roughness_v = roughness_u,

color tint = color(1.0),

float3 tangent_u = state::texture_tangent_u(0),

uniform scatter_mode mode = scatter_reflect,

uniform string handle = ""

);

Glossy reflection and transmission based on a microfacet model [5] using a GGX distribution and a v-
cavities shadowing term [7]. Becomes black in transmission mode if the ior values indicate total interior
reflection.

roughness_u – Roughness coefficient in the u direction. Range: [0,∞), with 0 specifying pure specular
reflection.

roughness_v – Roughness coefficient in the v direction. Range: [0,∞), with 0 specifying pure specular
reflection.

tint – Scaling factor, defined as a color, multiplied by the result of the distribution function.

tangent_u – The tangent in the u direction, in internal space.

mode – One of three values: scatter_reflect, scatter_transmit, or (for both)
scatter_reflect_transmit.

handle – Name to provide access to this component for use in an MDL integration.
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bsdf ward_geisler_moroder_bsdf(

float roughness_u,

float roughness_v = roughness_u,

color tint = color(1.0),

float3 tangent_u = state::texture_tangent_u(0),

uniform string handle = ""

);

Glossy reflection based on the Ward BRDF model with bounded albedo [9].

roughness_u – Roughness coefficient in the u direction. Range: [0,∞), with 0 specifying pure specular
reflection.

roughness_v – Roughness coefficient in the v direction. Range: [0,∞), with 0 specifying pure specular
reflection.

tint – Scaling factor, defined as a color, multiplied by the result of the distribution function.

tangent_u – The tangent in the u direction, in internal space.

handle – Name to provide access to this component for use in an MDL integration.

21.2 Light emission

This section documents the elemental emission distribution function (EDF) models defined in MDL and
their input parameters.

Additionally, the following supportive functions on light profiles are available in the df module.

float light_profile_power(

uniform light_profile profile

) uniform

Returns the power emitted by this light profile. A
lookup on an invalid light profile reference returns
zero.

float light_profile_maximum(

uniform light_profile profile

) uniform

Returns the maximum intensity in this light profile.
A lookup on an invalid light profile reference
returns zero.

bool light_profile_isvalid(

uniform light_profile profile

) uniform

Returns true if the value of profile is a valid light
profile reference and false otherwise.

edf diffuse_edf(

uniform string handle = ""

);

Uniform light emission in all directions.

handle – Name to provide access to this component for use in an MDL integration.
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edf spot_edf(

uniform float exponent,

uniform float spread = math::PI,

uniform bool global_distribution = true,

uniform float3x3 global_frame = float3x3(1.0),

uniform string handle = ""

);

Exponentiated cosine weighting for spotlight. The spot light is oriented along the positive z-axis.

exponent – Non-negative exponent for cosine of the angle between axis and sample point.

spread – Angle of the cone to which the cosine distribution is restricted. The
hemispherical domain for the distribution is rescaled to this cone. Range:
[0, π]

global_distribution – If true, the global coordinate system defines the orientation of light
distribution. Otherwise, it is oriented along the local tangent space.

global_frame – Orthonormal coordinate system that defines the orientation of the light
distribution with respect to the object space. In other words, multiplying
a direction in the coordinate frame of the light distribution with this matrix
transforms it into object space.

handle – Name to provide access to this component for use in an MDL integration.

edf measured_edf(

uniform light_profile profile,

uniform float multiplier = 1.0,

uniform bool global_distribution = true,

uniform float3x3 global_frame = float3x3(1.0),

float3 tangent_u = state::texture_tangent_u(0),

uniform string handle = ""

);

Light distribution defined by a profile.

profile – Definition of light distribution.

multiplier – Non-negative factor to scale the light distribution intensity.

global_distribution – If true, the global coordinate system defines the orientation of light
distribution. Otherwise, it is oriented along the local tangent space defined
by the tangent_u parameter.

global_frame – Orthonormal coordinate system that defines the orientation of the light
distribution with respect to the object space. In other words, multiplying
a direction in the coordinate frame of the light distribution with this matrix
transforms it into object space.

tangent_u – The tangent in the u direction, in internal space.

handle – Name to provide access to this component for use in an MDL integration.
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21.3 Volume scattering

This section documents the elemental volume distribution function (VDF) models defined in MDL and their
input parameters.

vdf anisotropic_vdf(

float directional_bias = 0.0,

uniform string handle = ""

);

Volume light distribution with directional bias.

directional_bias – Influence of light direction on scattering. Range: [−1, 1], with 0 specifying
isotropic behavior, 1 forward scattering, and −1 back scattering.

handle – Name to provide access to this component for use in an MDL integration.

21.4 Hair bidirectional scattering distribution functions

This section documents the elemental hair bidirectional scattering distribution function (hair BSDF) models
defined in MDL and their input parameters. Defining an instance of these hair BSDF models uses the
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syntax of a function returning a hair_bsdf, which is not allowed elsewhere in MDL.

hair_bsdf chiang_hair_bsdf(

float diffuse_reflection_weight = 0.0,

color diffuse_reflection_tint = color(1.0),

float2 roughness_R = float2(0.0),

float2 roughness_TT = roughness_R,

float2 roughness_TRT = roughness_TT,

float cuticle_angle = 0.0,

color absorption_coefficient = color(0.0),

float ior = 1.55,

uniform string handle = ""

);

Aggregated reflective and transmissive scattering based on the Chiang et al. hair shading model [10] com-
bined with a weighted diffuse reflection component. This hair shading model categorizes the light paths
according to the number of internal reflections. The first three categories (and their lobes) are labeled
based on event types as R, TT, and TRT, where R denotes a reflection event and T denotes a transmission
event. The first three are modeled as separate lobes with roughness parameters along the longitudinal
and azimuthal directions, while all longer paths are implicitly accounted for in a fourth lobe in the model
without additional parameters; the longitudinal roughness of the fourth lobe is set to the one of the third
lobe, while the model needs no roughness parameter for the azimuthal direction.

diffuse_reflection_weight – Weight of the additional diffuse reflection component. The hair
shading model is weighted with (1 − weight).

diffuse_reflection_tint – Tint of the additional diffuse reflection component.

roughness_R – Longitudinal and azimuthal roughness (ν, s) for the first R-lobe.
Range: [0,∞)2, with (0, 0) specifying pure specular scattering.

roughness_TT – Longitudinal and azimuthal roughness (ν, s) for the second TT-lobe.
Range: [0,∞)2, with (0, 0) specifying pure specular scattering.

roughness_TRT – Longitudinal and azimuthal roughness (ν, s) for the third TRT-lobe.
Range: [0,∞)2, with (0, 0) specifying pure specular scattering.

cuticle_angle – Cuticle angle in radians, positive angles tilt the scales towards the root
of the fiber. Range: (−π

2 , π

2 ).

absorption_coefficient – Absorption coefficient normalized to the hair fiber diameter.

ior – Index of refraction, with 1.55 being the value for keratin as default.

handle – Name to provide access to this component for use in an MDL
integration.

21.5 Distribution function modifiers

Distribution function modifiers accept another distribution function as input parameter and change their
behavior, such as changing its overall color, adding a directional-dependent thin-film effect, or attenuating
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them in a directional dependent way, to form a new distribution function.

bsdf tint(

color tint,

bsdf base

);

edf tint(

uniform color tint,

edf base

);

Tint the result of an elemental or compound distribution function with an additional color.

tint – Scaling factor, defined as a color, multiplied by the result of the distribution function.

base – Input distribution function.

bsdf thin_film(

float thickness,

color ior,

bsdf base

);

Add reflective thin-film interference color to an elemental or compound BSDF.

thickness – Thickness of thin-film layer in nanometer [nm].

ior – Index of refraction.

base – Base BSDF.

bsdf fresnel_factor(

color ior,

color extinction_coefficient,

bsdf base = bsdf()

);

Modifier weighting a base BSDF based on the Fresnel reflection equation for a complex number IOR,
comprising a real number IOR and an extinction coefficient. This modifier is useful to model the re-
flectance behavior of conductors and semiconductors.

ior – The IOR.

extinction_coefficient – The extinction coefficient.

base – Base BSDF.
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bsdf directional_factor(

color normal_tint = color(1.0),

color grazing_tint = color(1.0),

float exponent = 5.0,

bsdf base = bsdf()

);

Directional modifier.

normal_tint – Color scaling factor at the normal.

grazing_tint – Color scaling factor at the grazing angle.

exponent – Exponent for directional factor. Default value (5.0) is from Schlick’s approximation.

base – Base BSDF to be modified by directional factor.

bsdf measured_curve_factor(

color[<N>] curve_values,

bsdf base = bsdf()

);

Modifier weighting a base BSDF based on a measured reflection curve.

curve_values – Measured data for the reflection behavior. A 1-d function measured in the pre-image
range from zero to Pi/2 with equally spaced measured reflectance values.

base – Base BSDF to be modified by the measured reflectance curve.

bsdf measured_factor(

uniform texture_2d values,

bsdf base = bsdf()

);

Modifier weighting a base BSDF based on measured reflection values.

values – Measured data of type color for the reflection behavior. A 2-d function measured in the
pre-image range [0, π/2]2 with equally spaced reflectance values, where the texture-space u-
coordinate corresponds to the angle α between the incoming direction and the half-vector h

from the microfacet model, and the texture-space v-coordinate corresponds to the angle β

between the half-vector h and the shading surface normal.

base – Base BSDF to be modified by the measured reflectance values.

21.6 Distribution function combiners

Distribution function combiners accept one or more distribution functions and combine them in a
weighted, possibly directional dependent way to form a new combined distribution function.

21.6.1 Mixing distribution functions

Mixers combine distribution functions as a weighted sum to form a new distribution function. The sum
of the weights should not exceed one and in case it does, the weights are either normalized or clamped,
depending on the kind of mixer chosen.

The weights in a mixer can be all scalar, i.e., of type float, or of type color.
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Scalar weights are combined with the affected distribution functions in values of the following structure
types.

struct bsdf_component {

float weight = 0.0;

bsdf component = bsdf();

};

struct edf_component {

uniform float weight = 0.0;

edf component = edf();

};

struct vdf_component {

float weight = 0.0;

vdf component = vdf();

};

Component in a scalar mixing operation.

weight – Scaling factor for the effect of the component in the mixing operation. Range: [0, 1].

component – Distribution function defining the operation of the component.

Color weights are combined with the affected distribution functions in values of the following structure
types. Note: There is no component for color weights with a VDF because there is no color mixer for
VDFs.

struct color_bsdf_component {

color weight = color(0.0);

bsdf component = bsdf();

};

struct color_edf_component {

uniform color weight = color(0.0);

edf component = edf();

};

Component in a color mixing operation.

weight – Scaling factor for the effect of the component in the mixing operation. Range:
[color(0), color(1)].

component – Distribution function defining the operation of the component.
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bsdf normalized_mix(

bsdf_component[<N>] components

);

edf normalized_mix(

edf_component[<N>] components

);

vdf normalized_mix(

vdf_component[<N>] components

);

Mix N elemental or compound distribution functions based on the scalar weights defined in the compo-
nents. If the sum of the weights exceeds 1.0, they are normalized.

components – Array of distribution function components combined by the mix.

bsdf color_normalized_mix(

color_bsdf_component[<N>] components

);

edf color_normalized_mix(

color_edf_component[<N>] components

);

Mix N elemental or compound distribution functions based on the color weights defined in the compo-
nents. If the sum of the weights exceeds color(1) anywhere, the weights are normalized by dividing them
equally by the maximum of this sum.

components – Array of distribution function components combined by the mix.

bsdf clamped_mix(

bsdf_component[<N>] components

);

edf clamped_mix(

edf_component[<N>] components

);

vdf clamped_mix(

vdf_component[<N>] components

);

Mix N elemental or compound distribution functions based on the scalar weights defined in the compo-
nents. Distribution functions and weights are summed in the order they are given. Once a component
weight would cause the sum to exceed 1.0, it is replaced with the result of subtracting the sum from 1.0.
All subsequent weights are then set to 0.0.

components – Array of distribution function components combined by the mix.
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bsdf color_clamped_mix(

color_bsdf_component[<N>] components

);

edf color_clamped_mix(

color_edf_component[<N>] components

);

Mix N elemental or compound distribution functions based on the color weights defined in the compo-
nents. Distribution functions and weights are summed in the order they are given. Once a component
weight would cause the sum to exceed color(1) anywhere in the spectrum, it is clamped such that the sum
equals to one in places where it would have exceeded color(1).

components – Array of distribution function components combined by the mix.

21.6.2 Layering distribution functions

Layerers combine distribution functions by logically layering one distribution function over another. A
weight controls the contribution of the top layer versus the base layer, which is weighted with one minus
the weight. The weight can be a directional dependent weight, depending on the specific kind of layerer
chosen.

The weight of a layerer can be a scalar, i.e., of type float, or of type color.

bsdf weighted_layer(

float weight

bsdf layer

bsdf base = bsdf(),

float3 normal = state::normal()

);

Add an elemental or compound BSDF as a layer on top of another elemental or compound BSDF accord-
ing to weight. The base is weighted with 1-weight.

weight – Factor for layer. Range: [0, 1]. Values outside of the range are clamped to this range.

layer – Layer to add to the base BSDF.

base – Base BSDF.

normal – Surface normal vector, in internal space, applied to top layer.
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bsdf color_weighted_layer(

color weight

bsdf layer

bsdf base = bsdf(),

float3 normal = state::normal()

);

Add an elemental or compound BSDF as a layer on top of another elemental or compound BSDF accord-
ing to weight. The base is weighted with color(1)-weight.

weight – Factor for layer. Range: [color(0), color(1)]. Values outside of the range are clamped to this
range.

layer – Layer to add to the base BSDF.

base – Base BSDF.

normal – Surface normal vector, in internal space, applied to top layer.

bsdf fresnel_layer(

float ior,

float weight = 1.0,

bsdf layer = bsdf(),

bsdf base = bsdf(),

float3 normal = state::normal()

);

Add an elemental or compound BSDF as a layer on top of another elemental or compound BSDF accord-
ing to weight and a Fresnel term using a dedicated index of refraction for the layer. The base is weighted
with 1-(weight*fresnel(ior)).

ior – Index of refraction. Changed from type color to type float.

weight – Factor for layer. Range: [0, 1]. Values outside of the range are clamped to this range.

layer – Layer to add to the base BSDF.

base – Base BSDF.

normal – Surface normal vector, in internal space, applied to top layer.
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bsdf color_fresnel_layer(

color ior,

color weight = color(1.0),

bsdf layer = bsdf(),

bsdf base = bsdf(),

float3 normal = state::normal()

);

Add an elemental or compound BSDF as a layer on top of another elemental or compound BSDF accord-
ing to weight and a Fresnel term using a dedicated index of refraction for the layer. The base is weighted
with color(1)-(weight*fresnel(ior)).

ior – Index of refraction.

weight – Factor for layer. Range: [color(0), color(1)]. Values outside of the range are clamped to this
range.

layer – Layer to add to the base BSDF.

base – Base BSDF.

normal – Surface normal vector, in internal space, applied to top layer.

bsdf custom_curve_layer(

float normal_reflectivity,

float grazing_reflectivity = 1.0,

float exponent = 5.0,

float weight = 1.0,

bsdf layer = bsdf(),

bsdf base = bsdf(),

float3 normal = state::normal()

);

BSDF as a layer on top of another elemental or compound BSDF according to weight and a Schlick-style
directional-dependent curve function. The base is weighted with 1-(weight*curve()).

normal_reflectivity – Reflectivity for angle of incidence normal to the surface.

grazing_reflectivity – Reflectivity for angle of incidence at 90 degrees to surface normal.

exponent – Exponent for Schlick’s approximation.

weight – Factor for layer. Range: [0, 1]. Values outside of the range are clamped to
this range.

layer – Layer to add to the base BSDF.

base – Base BSDF.

normal – Surface normal vector, in internal space, applied to top layer.
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bsdf color_custom_curve_layer(

color normal_reflectivity,

color grazing_reflectivity = color(1.0),

float exponent = 5.0,

color weight = color(1.0),

bsdf layer = bsdf(),

bsdf base = bsdf(),

float3 normal = state::normal()

);

BSDF as a layer on top of another elemental or compound BSDF according to weight and a Schlick-style
directional-dependent curve function. The base is weighted with color(1)-(weight*curve()).

normal_reflectivity – Reflectivity for angle of incidence normal to the surface.

grazing_reflectivity – Reflectivity for angle of incidence at 90 degrees to surface normal.

exponent – Exponent for Schlick’s approximation.

weight – Factor for layer. Range: [color(0), color(1)]. Values outside of the range are
clamped to this range.

layer – Layer to add to the base BSDF.

base – Base BSDF.

normal – Surface normal vector, in internal space, applied to top layer.

bsdf measured_curve_layer(

color[<N>] curve_values,

float weight = 1.0,

bsdf layer = bsdf(),

bsdf base = bsdf(),

float3 normal = state::normal()

);

BSDF as a layer on top of another elemental or compound BSDF according to weight and a measured
reflectance curve. The base is weighted with 1-(weight*curve()).

curve_values – Measured data for the reflection behavior. A 1-d function measured in the pre-image
range from zero to Pi/2 with equally spaced measured reflectance values.

weight – Factor for layer. Range: [0, 1]. Values outside of the range are clamped to this range.

layer – Layer to add to the base BSDF.

base – Base BSDF.

normal – Surface normal vector, in internal space, applied to top layer.
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bsdf color_measured_curve_layer(

color[<N>] curve_values,

color weight = color(1.0),

bsdf layer = bsdf(),

bsdf base = bsdf(),

float3 normal = state::normal()

);

BSDF as a layer on top of another elemental or compound BSDF according to weight and a measured
reflectance curve. The base is weighted with color(1)-(weight*curve()).

curve_values – Measured data for the reflection behavior. A 1-d function measured in the pre-image
range from zero to Pi/2 with equally spaced measured reflectance values.

weight – Factor for layer. Range: [color(0), color(1)]. Values outside of the range are clamped
to this range.

layer – Layer to add to the base BSDF.

base – Base BSDF.

normal – Surface normal vector, in internal space, applied to top layer.
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22 Appendix A – The syntax of MDL

This section describes the syntactic structure of MDL in a grammar using Wirth’s extensions of Backus
Normal Form. The left-hand side of a production is separated from the right hand side by a colon.
Alternatives are separated by a vertical bar. Optional items are enclosed in square brackets. Curly braces
indicate that the enclosed item may be repeated zero or more times.

Non-terminal and meta-symbols are given in italic font. Terminal symbols except identifiers, typenames,
and literals are given in teletype font. The definition for the terminal symbols identifier, typename,
boolean_literal, integer_literal, float_literal, and string_literal is given in Section 5 with the other parts of the
lexical structure of MDL.

This grammar is an incomplete description of MDL, defining a superset of all legal MDL programs. Further
restrictions required by legal MDL programs are included in corresponding chapters of this document.
The page number of the section that describes the use of the syntax rule in MDL programs is listed to the
right.

mdl : mdl_version

{ import}

[ module annotation_block ; ]

{[export ] global_declaration} 11, 77 , 79

package : mdl_version

{ import}

[ package annotation_block ; ] 80

boolean_literal : true | false 17

enum_literal : intensity_radiant_exitance | intensity_power 17

integer_literal : INTEGER_LITERAL 17

floating_literal : FLOATING_LITERAL 17

string_literal : STRING_LITERAL 17

mdl_version : mdl floating_literal ; 11

simple_name : IDENT 75

import_path : ( {..:: } | [.:: ] | [:: ] ) simple_name {:: simple_name} 75

qualified_import : import_path [:: * ] 75

qualified_name : [:: ] simple_name {:: simple_name}

frequency_qualifier : varying | uniform 19
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relative_type : bool | bool2 | bool3 | bool4 19

| int | int2 | int3 | int4

| float | float2 | float3 | float4

| float2x2 | float2x3 | float2x4

| float3x2 | float3x3 | float3x4

| float4x2 | float4x3 | float4x4

| double | double2 | double3 | double4

| double2x2 | double2x3 | double2x4

| double3x2 | double3x3 | double3x4

| double4x2 | double4x3 | double4x4

| color | string | bsdf | edf | vdf | hair_bsdf

| light_profile | bsdf_measurement

| material | material_emission | material_geometry

| material_surface | material_volume | intensity_mode

| texture_2d | texture_3d | texture_cube | texture_ptex

| IDENT [:: relative_type ]

simple_type : [:: ] relative_type 19

array_type : simple_type [[ [conditional_expression | < simple_name > ] ] ] 19, 41

type : [frequency_qualifier ] array_type 19

parameter : type simple_name [= assignment_expression ] 54, 55, 68

[annotation_block ]

parameter_list : ( [parameter {, parameter} ] ) 54, 68

positional_argument : assignment_expression 54

named_argument : simple_name : assignment_expression 54

argument_list : ( 54

[named_argument {, named_argument}

| positional_argument {, positional_argument}

{, named_argument}

]

)

import : import qualified_import {, qualified_import} ; 11, 75, 77

| [export ] using import_path

import ( * | simple_name {, simple_name} ) ;

global_declaration : annotation_declaration 11

| constant_declaration

| type_declaration

| function_declaration

annotation_declaration : annotation simple_name parameter_list [annotation_block ] ; 73

constant_declarator : simple_name ( argument_list | = conditional_expression ) 24

[annotation_block ]
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constant_declaration : const array_type constant_declarator {, constant_declarator} ; 24

type_declaration : alias_type_declaration 50

| struct_type_declaration

| enum_type_declaration

alias_type_declaration : typedef type simple_name ; 49

struct_field_declarator : type simple_name [= expression ] 44

[annotation_block ] ;

struct_type_declaration : struct simple_name [annotation_block ]

{ {struct_field_declarator} } ; 44

enum_value_declarator : simple_name [= assignment_expression ] [annotation_block ] 47

enum_type_declaration : enum simple_name [annotation_block ] { 47

enum_value_declarator {, enum_value_declarator}

} ;

variable_declarator : simple_name [argument_list | = assignment_expression ] 20

[annotation_block ]

variable_declaration : type variable_declarator 20

{, variable_declarator} ;

function_declaration : type [annotation_block ] simple_name 54, 68, 61, 69

( parameter_list [frequency_qualifier ] [annotation_block ]

( ;

| compound_statement

| = expression ;

)

| ( * ) [annotation_block ] = expression ;

)

annotation_block : [[ annotation {, annotation} ]] 73

annotation : qualified_name argument_list 73

statement : compound_statement 50

| type_declaration

| constant_declaration

| variable_declaration

| expression_statement

| if_statement

| switch_statement

| while_statement

| do_statement

| for_statement

| break_statement

| continue_statement

| return_statement
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compound_statement : { {statement} } 50

expression_statement : [expression ] ; 23

if_statement : if ( expression ) statement [else statement ] 51

switch_statement : switch ( expression ) { {switch_case} } 51

switch_case : case expression : {statement} | default : {statement} 51

while_statement : while ( expression ) statement 50

do_statement : do statement while ( expression ) ; 50

for_statement : for ( ( variable_declaration | expression_statement ) 50

[expression ] ; [expression ] )

statement

break_statement : break ; 52

continue_statement : continue ; 52

return_statement : return expression ; 53

literal_expression : boolean_literal 17

| enum_literal

| integer_literal

| floating_literal

| string_literal {string_literal}

| cast < array_type > ( unary_expression )

primary_expression : literal_expression 23

| simple_type [[ ] ]

| ( expression )

postfix_expression : primary_expression 23

{++

| --

| . simple_name

| argument_list

| [ expression ]

}

let_expression : let 22, 63, 71

( variable_declaration

| { variable_declaration {variable_declaration} }

)

in unary_expression

unary_expression : postfix_expression 22

| ( ~ | ! | + | - | ++ | -- ) unary_expression

| let_expression
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multiplicative_expression : unary_expression {( * | / | % ) unary_expression} 22

additive_expression : multiplicative_expression {( + | - ) multiplicative_expression} 22

shift_expression : additive_expression {( << | >> | >>> ) additive_expression} 22

relational_expression : shift_expression {( < | <= | >= | > ) shift_expression} 22

equality_expression : relational_expression {( == | != ) relational_expression} 22

and_expression : equality_expression {& equality_expression} 22

exclusive_or_expression : and_expression {^ and_expression} 22

inclusive_or_expression : exclusive_or_expression {| exclusive_or_expression} 22

logical_and_expression : inclusive_or_expression {&& inclusive_or_expression} 22

logical_or_expression : logical_and_expression {|| logical_and_expression} 22

conditional_expression : logical_or_expression [? expression : assignment_expression ] 22

assignment_operator : = | *= | /= | %= | += | -= | <<= | >>= | >>>= | &= | ^= | |= 22

assignment_expression : logical_or_expression 22

[? expression : assignment_expression

| assignment_operator assignment_expression

]

expression : assignment_expression {, assignment_expression} 22
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23 Appendix B – MBSDF file format

The MBSDF file format stores the data for a measurement of a bidirectional scattering distribution function
(BSDF). A BSDF consist of two parts: a bidirectional reflection distribution function (BRDF) and a
bidirectional transmission distribution function (BTDF). A measurement can contain either one or both.

This section documents version 1 of the MBSDF file format.

The filename extension is .mbsdf.

The file format starts with a file header and has one or two BSDF data blocks. The file header is readable
ASCII text while the BSDF data blocks are binary data after a text identifier. The BRDF data comes before
the BTDF data if both are present. The second block is directly appended to the first.

The basic entities to describe the format are the following types and their file storage size and description:

Type Bytes Storage
string variable string restricted to printable ASCII characters and terminated by ’\n’.
uint 4 binary storage of a 32-bit unsigned integer value in little-endian ordering
float 4 single-precision floating-point number as defined in IEEE-754 with binary

storage in little-endian ordering.

A type followed by an array-like brackets ’[]’ denote a sequence of zero or more occurrences of this type.

23.1 Header block

The header block starts with a magic identifier string including a version number followed by a sequence
of strings for meta-data.

Type Bytes Value Comment
string 20 NVIDIA ARC MBSDF V1\n magic identifier including file format version num-

ber, terminated by newline.
string[] variable meta-data sequence of zero or more strings, each representing

a key-value pair in the format <key>="<value>"\n.
The sequence \n encodes a newline character, \"

encodes a double quote, and \\ encodes a backslash
in the value part. Other escape sequences are not
allowed and ignored.

The meta-data can be used to document, for example, a name of the measured material, authorship,
copyright, measurement device or date.

23.2 BSDF data block

A BRDF data block starts with an identifier to distinguish between BRDF and BTDF data, followed
by the binary data. The identifier terminates with an equal sign before the newline character without a
double-quote, which distinguishes it unambiguously from the sequence of meta-data in the header block.
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Figure 1: The geometry of the angles in a single BRDF measurement for the incoming light direction in and

outgoing light direction out.

Type Bytes Value Comment
string variable IDENT=\n identifier to start the binary data block, where the IDENT

can be MBSDF_DATA_REFLECTION or MBSDF_DATA for a BRDF
block or MBSDF_DATA_TRANSMISSION for a BTDF block.

uint 4 T enum value encoding the type of one measurement: T = 0:
one float representing a scalar intensity measurement. T = 1:
three float values representing a sRGB measurement.

uint 4 nΘ number of steps used for an equi-spaced angular resolution
of Θi and Θo, greater than zero.

uint 4 nΦ number of steps used for an equi-spaced angular resolution
of Φ, greater than zero.

float[] nΦ · nΘ · nΘ · S measured data S is the size of a single measurement in bytes, i.e.,
4 for T = 0 and 12 for T = 1. The data is
stored in the order defined by this indexing offset
function: offset(idx_theta_i, idx_theta_o, idx_phi)

= idx_theta_i*nΦ*nΘ + idx_theta_o*nΦ + idx_phi.

The angular resolution is the same for Θi and Θo. Both angles are sampled in the range [0, π/2], while Φ is
sampled in the range [0, π].
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24 Appendix C – MDL archive file format

MDL archives provide a way of combining a set of MDL packages and modules, as well as resources like
textures, into a single file. This allows for easier deployment and versioning.

The MDL archive specification consists of the archive container specification (Section 24.1) and the archive
manifest specification (Section 24.2).

24.1 Archive container

Archives act as a virtual extension to the file system. The behavior of an MDL module remains the same,
regardless of whether it is placed in an archive or stored directly in the file system.

24.1.1 Contents

An MDL archive encloses a single package, a single module, or a single package with an identically named
module on the same level.

If the contained module or package is itself a member of higher level packages, those packages will be
present in the form of parent directories in the archive structure.

Below the contained package directory, archives can also contain other files besides MDL modules, most
notably resource files such as textures. If a directory contains directly or indirectly an MDL module then
the directory must be a legal MDL package (Section 15), i.e., its name must be a legal MDL identifier
(Section 5.5).

Each archive must contain exactly one manifest of the type described in Section 24.2.

24.1.2 Name

The file name of an archive consists of the package path of the enclosed package from the search root
(exclusive) to the package itself (inclusive). Package names are separated by a dot. The archive file
extension is .mdr. For example, consider the following directory structure

<search-path-root>

+--- parent

+--- m.mdl

+--- m

+--- i1.mdl

+--- i2.mdl

+--- sub

+--- ...

where the package m, its identically named module m.mdl, and subpackages will be combined into an
archive. The resulting archive, parent.m.mdr, will have the following structure

<archive-root>

+--- MANIFEST

+--- parent

+--- m.mdl
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+--- m

+--- i1.mdl

+--- i2.mdl

+--- sub

+--- ...

The system will reject archives that do not follow this convention.

24.1.3 Installation and use

Archives must be installed in the top level of a search root. Archives found elsewhere will be ignored. The
system may issue a warning in that case.

It is an error to duplicate contents of an archive in the same search root as the archive itself. In particular,
given an archive with a name ending in m.mdr, its content includes either a package m or a module m.mdl

(or both), and neither is allowed to exist in the same search root or in another archive in the same search
root, irrespectively of whether actually both or only one exist in the archive. In case of an error, no entity
in the archive or in its duplicated contents can be found and used. The rationale here is that to resolve a
qualified MDL name and its prefixes, only one archive needs to be inspected per search root and there will
not be any conflict with the non-archive packages and modules.

For example, given an archive a.b.c.mdr, the following search root structure illustrates the principle error
cases:

<search-path-root>

+--- a.b.c.mdr

+--- a.b.d.mdr // o.k., ::a::b::d::... resolves uniquely

+--- a.b.c.e.mdr // ERROR! ::a::b::c::... is ambigious

+--- a

+--- b

+--- f // o.k., ::a::b::f::... resolves uniquely

+...

+--- c // ERROR! ::a::b::c::... is ambigious

+...

+--- c.mdl // ERROR! ::a::b::c::... is ambigious

24.1.4 File format

Archives consist of an 8 byte marker block immediately followed by a ZIP file [11] with contents described
above. The hexadecimal encoding of the marker block is 4D 44 52 00 00 01 00 00. The ZIP version
needed to extract each file [11, Section 4.4.3] must not be higher than 2.0.

Texture files (Section 2.3) are stored without compression.
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24.2 Archive manifest

The manifest provides meta information about an MDL archive to integrations. The manifest is a plain
text UTF-8 [2] file named MANIFEST and placed in the root of the archive directory tree. Furthermore, the
manifest must be the first file in the archive structure and stored without compression.

24.2.1 Data layout

The manifest file contains a number of key/value pairs. Key and value are separated by the equality sign =

and optional white space.

The name of a key is a valid identifier as described in Section 5.5, except that typenames and reserved words
are allowed, possibly followed by a sequence of dot and another identifier. Each key must start in the first
column of a new line.

Values are arbitrary strings enclosed by double quotes. Values may span several lines. In this case, each
line is quoted. Value continuation lines following the key line must be indented by at least one whitespace.
Escape sequences \" and \\ are interpreted to mean a literal double quote (rather than the end of the
value string) and a literal backslash, respectively. Other escape sequences as described in Section 5.7.5 are
retained in the string but do not affect the parsing of the value.

Manifest files may furthermore contain empty lines and comments. Comments are lines starting with the
hash character # and extend until the end of the line.

24.2.2 Mandatory fields

The following fields are mandatory. Failure to specify all of the following fields correctly will result in an
error and rejection of the archive, except for the case of missing dependencies, which whenever detected
at runtime will result in a warning.

mdl Specifies the MDL version of this archive. The version follows that described in
Section 4.1. The archive may not contain modules with a higher MDL version.
The manifest shall contain exactly one mdl field.

version Specifies the version number of the archive contents. The format of the value
must follow Semantic Versioning 2.0.0 [3]. Pre-release labels are permitted, e.g.,
1.0.0-alpha.1. Labels for build metadata are not permitted. The manifest shall
contain exactly one version field.
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dependency Specifies a dependency of the archive’s contents on another archive. Multiple
dependency fields are used to express multiple dependencies. There is no de-
pendency field if the archive’s content does not depend on any other archive. A
system shall issue a warning for archives whose dependencies are not satisfied or
if dependencies are detected that are missing in the manifest.

The format is the archive name (see Section 24.1.2) excluding the .mdr file ex-
tension followed by a space and the required version of the archive. The format
of the version must follow Semantic Versioning 2.0.0 [3]. Pre-release labels are
permitted, e.g., 1.0.0-alpha.1. Labels for build metadata are not permitted.

The version specifies the minimum version that the referenced archive must
have to satisfy the dependency. In particular, the dependency is satisfied if the
referenced archives’s version has the same major number and its minor number,
patch number, and pre-release modifier compare equal or higher to the version
requested.

For example, an archive pkg.example.mdrwith the following version field

version="2.1.3"

works fine with archives that have dependency fields as follows:

dependency="pkg.example 2.0.1"

dependency="pkg.example 2.1.3"

And it warns with archives that have dependency fields as follows, one for a
too high version number and one for a non-matching major number:

dependency="pkg.example 2.1.4" ! warning

dependency="pkg.example 1.1.3" ! warning

module Lists all modules in the archive. The value is the fully qualified name of the
module. Multiple modules are specified with multiple fields. An MDL archive
may have no MDL module in which case there will be no module fields and no
exportsfields in the manifest. The list of modules must be correct and complete.

exports.function Lists all functions exported by the modules in the archive. The value is the
fully qualified name of the function. Parameter list and return value are omitted.
Multiple exports are specified with multiple fields. The list of exports must be
correct and complete.

exports.material The equivalent of exports.function for materials (Section 13).

exports.struct The equivalent of exports.function for structs (Section 8).

exports.enum The equivalent of exports.function for enumerations (Section 9).

exports.const The equivalent of exports.function for global constants (Section 6.6).

exports.annotation The equivalent of exports.function for annotations (Section 14).
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The following example shows a small manifest of an archive exporting a single material with a dependency
on another archive:

# comment in an example MANIFEST

mdl="1.2"

version="1.0.0"

dependency="other_package.example_archive 1.2.3"

module="::example_package::example_module"

exports.material="::example_package::example_module::example_material"

24.2.3 Optional fields

The following fields are optional. They define a set of attributes with a common interpretation.

The following fields follow the standard annotations specified in Section 18.

author Specifies the archive author. Multiple authors are specified with multiple fields.

contributor Specifies the name of a contributing author. Multiple contributors are specified
with multiple fields.

copyright_notice Specifies copyright information. The manifest shall not contain more than one
copyright_notice field.

description Specifies a description of the archive. The manifest shall not contain more than
one description field.

created Specifies the date on which the archive was created. The format of the string is
YYYY-MM-DD[, NOTE], where the trailing note is an arbitrary string. The manifest
shall not contain more than one created field.

modified Specifies the date on which the archive was modified. The format follows that
of created. The manifest shall not contain more than one modified field.
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25 Appendix D – MDLE file format

The NVIDIA Material Definition Language Encapsulated file format, or MDLE for short, is a container
format that stores one MDL function or material with all its dependencies including resources in one file.
It is fully self-contained and has no external dependencies except maybe for standard library functions.

25.1 File name and location

MDLE files can have arbitrary file names followed by the file name extension .mdle. They can be placed
and used anywhere in a file system.

Note: MDLE files deviate from the requirements on MDL files. In particular, MDLE files do not make
use of the file path and resolution from Section 2.2 and are not restricted in their name to MDL identifiers
(Section 15).

25.2 Container format

MDLE files consist of an eight-byte marker block immediately followed by a sixteen-byte hash block,
which is in turn immediately followed by a ZIP file [11]. The hexadecimal encoding of the marker block
is 4D 44 4C 45 00 01 00 00, i.e., the marker block starts with the string "MDLE" followed by four bytes
reserved for future use. Details on the hash block follow below.

The ZIP version needed to extract each file [11, Section 4.4.3] must not be higher than 2.0.

The ZIP-file comment [11, Section 4.4.26] may be used to store the name and version information of the
authoring program of this MDLE file as an UTF-8-encoded string [2].

The ZIP file contains a set of standardized files and directories as detailed in Section 25.3. It may contain
additional files and directories, where it is recommended to isolate related groups of additional files in their
own directory to reduce the risk of name collisions.

All files in the ZIP file must have an MD5 hash value [12] computed and stored in the ZIP-file meta data
as an extra field [11, Section 4.4.28 and 4.5] per file with the two-byte Header ID set to 0x444d ("MD"). The
MD5 hash value is stored as 16-byte binary data in the extra field of the local file header.

To identify an MDLE independent of its file name and path in the file system, an additional MD5 hash
must be stored as 16-byte binary data in the hash block at the beginning of the MDLE file. This hash value
is computed over a sorted list in ascending order of all file paths in the ZIP-file, using the UTF-8 encoding
of their relative path in the ZIP-file [11, Section 4.4.17], each file path followed by the individual binary
MD5 hash of that file.

Image files, which are, for example, used for textures (Section 2.3) or preview images with the thumbnail

annotation (Section 18), must be stored without compression in the ZIP file.

25.3 Container content

The ZIP-file must contain a file named main.mdl. This file defines the main module, which is a regular
MDL module (Section 15) with the following restrictions:

1. The module contains an exported function or material named main. The behavior of the MDLE file
as a whole is defined by this one main declaration.
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2. All parameters of the main declaration must have default initializers.

3. The main module is written for a top-level placement in a search path, it is not placed inside a package.
Thus the fully qualified name of the main declaration is main::main.

4. The main module may import declarations from the standard modules (Section 16), but it must not
import declarations from any other module, i.e., the full implementation of the main declaration must
be in the main module.

5. In consequence, user defined structure types and enumeration types can only be used in the main
module if they are also declared in the main module, and they can only be used in the signature of
the main declaration if they are also exported from the main module.

6. The parameters of the main declaration can have fully general initializer expressions as permitted by
MDL, for example, state::normal(). However, in consequence of the import restrictions, non-
standard functions or types used in such initializer expressions must be implemented in the main
module and exported.

7. All declarations that must be exported only because of a parameter initializer expression of the main
declaration must be marked with the hidden annotation (Section 18).

8. There should be no other declarations exported from the main module besides those mentioned
explicitly in this section. An integration may ignore additionally exported declarations.

9. If a declaration in the main module is the result of a copy or refactoring operation of another
declaration, the origin() standard annotation (Section 18) shall be set to this original declaration, or
the value of its origin() annotation if it exists. The value of the origin() annotation may be used
to identify identical declarations more easily by integrations, but they need also to validate matching
signatures and implementations where applicable.

10. The implementation in the main module may reference resource files, i.e., texture (Section 6.12), light
profile (Section 6.13), or measured BSDF (Section 6.14) files. The reference to a resource file in the
MDL module must be a strict relative file path (Section 2.2).

Resource files used in the main module must be stored in a directory named resources in the ZIP file.
They must be stored without additional compression of the ZIP file format.

MDLE files may contain preview images, which must be stored in a directory named thumbnails in the
ZIP file. They must be stored without additional compression of the ZIP file format. Supported image
formats are the JPEG or PNG file format as defined in Section 2.3. The image file name must be the
module named followed by the previewed declaration name, separated by a dot, and followed by the
respective image file format extension, again separated by a dot. For example, the preview image for the
main declaration in the PNG format must be named main.main.png. The respective declarations in the
main module must use the thumbnail annotation (Section 18) to reference the preview image.

Note: The canonical preview image file name allows to use preview images without inspecting the MDL
module, while the thumbnail annotation in the main module is nonetheless mandated to keep the MDL
module standard conforming.

A minimal MDLE file structure in the ZIP file looks as follows:

<ZIP-file root>

+--- main.mdl
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An example of an MDLE file structure in the ZIP file with a texture, a preview image for the main
declaration, a preview image for an additional texture lookup function, and an XLIFF translation to
German looks as follows:

<ZIP-file root>

+--- main.mdl

+--- resources

| +--- example_texture.png

+--- thumbnails

| +--- main.main.png

| +--- main.texture_lookup.png

+--- main_de.xlf

25.4 Runtime model

Loading an MDLE file shall be equivalent to loading the main module on an otherwise empty system.
In particular, loading other MDL modules or MDLE files shall not have an observable influence on the
behavior of an MDLE file except possibly for memory and performance behavior.

To insulate an MDLE file from another MDLE file, it is recommended to prefix all runtime identifiers
from an MDLE file with a unique identifier for the MDLE file, for example, its full file system path and
file name.

A runtime may use the MD5 hash values in the MDLE files to identify identical files and optimize memory
and performance behavior of a system. In particular, a runtime can trust the MDL5 hash value and does
not have to check for its correctness.

Integrations may use the MDLE file name as a display name for the main declaration if no display_name

annotation (Section 18) is given explicitly.

The declarations in an MDLE file that are marked with the hidden annotation should be excluded from
general user-interface selection lists and browsers that are not context-restricted to the respective MDLE
file and its main module. On the other hand, for example, a node-graph editor should show the respective
nodes where applicable in relation to the main declaration node.

Since MDLE files need to declare all user defined structure types and enumeration types in their main
module, these types will never match otherwise identical types in other MDLE files or MDL modules.
This prevents the easy assignment of structure values as a whole or enumeration values outside of the
boundary of their defining MDLE file.

Note: The cast operator (Section TBD), which enables the assignment between structure equivalent
types, allows integrations to offer different assignment behaviors from strict to weak, from automatic to
user-controlled and configurable.

25.5 Interoperability between MDLE and MDL

MDLE files are self contained and have no references to nor dependencies on external MDL modules,
other MDLE files, nor external resources.

MDL files cannot import MDLE files.
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A runtime may use declarations from MDLE files in arguments to MDL declarations, and vice versa may
use declarations from MDL files in arguments to MDLE declarations. Such runtime graphs cannot be
exported as such into an MDL file nor an MDLE file. They may be exported to other scene graph file
formats depending on their capability, or refactoring may be used to create a pure MDLE or a pure MDL
file export.

138 NVIDIA Material Definition Language 1.5.2 c© 2019 NVIDIA Corporation.



26.2 Appendix E – MDL internationalization — File names and locations

26 Appendix E – MDL internationalization

MDL defines a framework for the internationalization of MDL annotation parameters of type string. The
translations are stored in the XLIFF 1.2 file format [13]. Following the standard, XLIFF files use the .xlf
file name extension. XLIFF files are stored in MDL search paths and can be embedded in MDL archives
and MDLE files. Each XLIFF file is specific to a locale, i.e., a translation language. The locale must be a
2-letter code defined by the ISO 639-1:2002 standard [14].

26.1 Translated annotation parameters

All annotation parameters of type string can be translated using this framework. In the standard library,
translation is limited to the following annotations only (Section 18):

anno::display_name anno::description anno::copyright_notice

anno::author anno::contributor anno::key_words

anno::unused anno::deprecated anno::in_group

26.2 File names and locations

XLIFF files used for MDL translations are located either in a directory or sub-directory of an MDL search
path (Section 2.2), inside an MDL archive file (Section 24), or inside an MDLE file (Section 25). Their file
paths are relative to a search root or MDLE ZIP-file content, see Section 26.2.3.

An XLIFF file can be a module XLIFF file, which provides translations for one language for an MDL
module only, or a package XLIFF file, which provides translations for one language for a package with all
its modules and sub-packages.

26.2.1 Module XLIFF files

A module XLIFF file is placed in a package or at the root of an MDL search path. Its name is

<module>_<locale>.xlf

where <module> is the MDL module name and <locale> is the locale. The file path of the module XLIFF
file must be the same as the file path of the module that it applies to.

26.2.2 Package XLIFF files

A package XLIFF file is placed in a package or at the root of an MDL search path. Its name is:

<locale>.xlf

where <locale> is the locale. The file path of the package XLIFF file must be the same as the file path of
the package or search root that it applies to.
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26.2.3 XLIFF file name resolution

The file paths for XLIFF files are not locations in the file system, but only references in relation to the
search paths. The translation of a file path to a file system location is the file resolution, which follows the
same rules as the file path resolutions for the absolute file paths of an MDL module, see Section 2.2.

This implies that XLIFF files for a module or package do not have to be in the same directory as the
MDL module or package itself. For example, the XLIFF file for the module file m.mdl located under
<search-path-root-1> could be located under <search-path-root-2>, which can be used to install
translation packs in locations independent from the MDL modules themselves:

<search-path-root-1>

+--- parent

+--- m.mdl

<search-path-root-2>

+--- parent

+--- m_fr.xlf

26.2.4 XLIFF files in MDL archives

When provided inside MDL archives (Section 24), XLIFF files follow the same conventions as in a regular
package structure with the exception that a package translation file is not allowed in the archive root
directory but only below that. A module translation file is allowed in the root directory of an archive.

26.2.5 XLIFF files in MDLE files

The simplified structure of an MDLE file (Section 25) with its single main module allows only for module
translation files, which are stored in the root directory of the ZIP-file structure next to the main.mdl

module.

26.2.6 XLIFF file context

The XLIFF file context is a fully qualified name that controls the scope of strings that are translated by
this file. The context is defined by the location of the file in relation to its MDL search path root,
and analoguously in MDL archive files: A module XLIFF file context is the absolute module name of its
respective module, and a package XLIFF file context is the absolute package name of its respective package.

In the following example, the XLIFF file context for fr.xlf is ::parent and the m_fr.xlf context is
::parent::m:

<search-path-root>

+--- parent

+--- m.mdl

+--- fr.xlf

+--- m_fr.xlf

The module XLIFF file context of the main module in an MDLE file is ::main.
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26.3 XLIFF elements used for MDL internationalization

XLIFF is an XML-based standard. This framework makes in particular use of the following tag elements
and attributes of the XLIFF standard.

26.3.1 Translation units

A translation unit element (<trans-unit>) contains a source (<source>) and a target (<target>) element.
A source element defines the string which needs to be translated. A target element represents the result of
the translation of the source element in the target language. The required id attribute is used to uniquely
identify the translation unit within all translation units. The optional note (<note>) element can be used
to add comments about the translation unit.

26.3.2 Scope of the translation units

The scope of a translation unit is a fully qualified MDL name. The scope determines for which MDL
elements this translation unit is used for. The scope is either implicit, in which case it is the XLIFF file
context, or explicit, in which case it is the group context specified by the resname attribute of a group
element.

26.3.3 Groups and group context

The optional group (<group>) element specifies a set of elements that should be processed together as a
translation unit.

Groups can specify a group context with the optional resname attribute, which restricts the scope of the
translation in this group to a specific MDL element. The group context is a relative qualified identifier name,
which is the identifier of the MDL element, with module and package names preceding it, all separated
by the scope operator ‘::’. It does not start with a scope operator. The group context is given relative
to the XLIFF file position such that the concatenation of the XLIFF file context and the group context,
separated by the scope operator ‘::’, form the fully qualified identifier of the MDL element.

The following example MDL file structure illustrates the use of contexts:

<search-path-root>

+--- parent

+--- example_material.mdl // contains ’example’ material

+--- example_material_fr.xlf

+--- fr.xlf

The package XLIFF file fr.xlf for a French translation uses the resname attribute to set the group context
and restrict the translation to a material example in the example_materialmodule:

<group resname="example_material::example">

<trans-unit id="anno_0">

<source>Example material</source>

<target>Exemple de matériel</target>

<note>Description for example material::example</note>

</trans-unit>

</group>
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Setting the group context for the same material in the module XLIFF file example_material_fr.xlf for a
French translation is shown in the following example. Note that the group context in the module XLIFF
file does not mention the example_materialmodule, which is now part of the XLIFF file context.

<group resname="example">

<trans-unit id="anno_0">

<source>Example material</source>

<target>Exemple de matériel</target>

<note>Description for example material::example</note>

</trans-unit>

</group>

26.3.4 Translation lookup order

When an annotation text in a certain module needs to be translated, the corresponding XLIFF file is looked
for in this order:

1. The module XLIFF file for the module,

2. the package XLIFF file for the modules package, and

3. the package XLIFF file for any of the modules package parents up to MDL search path root.

In the following example with a module ::parent::m:

<search-path-root>

+--- parent

+--- m.mdl

+--- m_fr.xlf // first lookup

+--- fr.xlf // second lookup

+--- fr.xlf // third lookup

the translation of an annotation from m.mdl will be looked up in:

1. parent/m_fr.xlf (context: ::parent::m)

2. parent/fr.xlf (context: ::parent)

3. fr.xlf (context empty)

Note: A function variant (Section 12.6) or material variant (Section 13.6) has no place to define own
annotations on parameters. Their parameters are defined by the function or material definition on which
this variant is based on. This implies that the respective module for parameter translations of annotations is
not the module of a variant definition, but the module of the non-variant definition for those parameters.
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28.2 Changes to this document — Changes for version 1.5.1

28 Changes to this document

Main changes for MDL 1.5 since the MDL 1.4 specification document version 1.4.4 from June 4, 2018.

28.1 Changes for version 1.5.2

• Removed the draft status of this document.

• Added annotations to annotation declarations. (Page 73)

• Added new standard annotation origin() and its use in the MDLE file format. (Pages 88 and 136)

28.2 Changes for version 1.5.1

• Updated version to 1.5.

• Added cast to the list of reserved words. (Page 16)

• Added hair_bsdf to the list of reserved words. (Page 16)

• Added a new cast operator. (Pages 23, 43, 46, and 48).

• Added a new hair_bsdf type and a hair field to the material type. (Pages 64 ff.)

• Clarified that the ternary conditional operator (‘?’) can alse be used in expressions of type
material_surface, material_emission, material_volume, and material_geometry. (Page 72)

• Added definitions of the available render state for hair shading, in particular texture_space(0)with
its normalized position of the intersection point on the hair fiber. (Page 89)

• Clarified that the multiplier parameter of df::measured_bsdf has to be non-negative. (Page 105)

• Clarified that the exponent parameter of df::spot_edf has to be non-negative. (Page 109)

• Clarified the permitted range of values for the spread parameter of df::spot_edf. (Page 109)

• Clarified that the multiplier parameter of df::measured_edf has to be non-negative. (Page 109)

• Clarified that the tangent_uparameter of df::measured_edf is only used if the global_distribution
is set to false. (Page 109)

• Added new hair bidirectional scattering distribution function df::chiang_hair_bsdf based on the
Chiang et al. hair shading model [10] combined with a weighted diffuse reflection component.
(Page 110)

• Added new distribution function modifier df::measured_factor to support microfacet coloring
based on the angle between the half-vector and the shading normal in addition to the angle between
the half-vector and the incoming ray direction. (Page 113)

• Added new Appendix D for MDL encapsulated file format MDLE. (Page 135)

• Added new Appendix E for MDL internationalization. (Page 139)

• Added bibliography reference to RFC 3629 for the UTF-8 standard. (Page 143)
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