Blackwell
2026年 2月 9日
借助 NVIDIA TensorRT LLM AutoDeploy 实现推理优化自动化
NVIDIA TensorRT LLM 使开发者能够为大语言模型 (LLM) 构建高性能推理引擎,但传统上部署新架构往往需要大量手动工作。
3 MIN READ
2026年 2月 6日
NVFP4 加速 AI 训练与推理的三大方式
新兴的 AI 模型在规模和复杂性上持续增长,对训练和推理的计算性能需求日益提升,已远超摩尔定律所能满足的范畴。
2 MIN READ
2026年 2月 2日
使用混合专家并行优化混合专家训练的通信
在 LLM 训练中,超大规模多专家模型 (MoE) 的专家并行 (EP) 通信面临巨大挑战。EP 通信本质上属于多对多模式,
4 MIN READ
2026年 1月 22日
在 NVIDIA Blackwell 数据中心 GPU 上实现 FLUX.2 的 NVFP4 推理扩展
2025 年,NVIDIA 与 Black Forest Labs (BFL) 合作优化 FLUX.1 文本转图像模型系列,
3 MIN READ
2026年 1月 8日
借助 NVIDIA Blackwell 实现多专家模型推理的巨大性能飞跃
随着 AI 模型持续变得更加智能,人们能够依赖它们完成日益增多的任务。这导致用户(从消费者到企业)与 AI 的交互愈发频繁,
2 MIN READ
2026年 1月 5日
深度解析 NVIDIA Rubin 平台:六款新芯片打造AI超级计算机
AI 已进入工业阶段。 最初是用于执行离散 AI 模型训练和面向人类推理的系统,现已演变为全天候运行的 AI 工厂,持续将功率、
12 MIN READ
2025年 12月 17日
使用 NVIDIA cuDSS 解决大规模线性稀疏问题
随着芯片设计、制造和多物理场仿真复杂性的持续提升,在电子设计自动化(EDA)、
5 MIN READ
2025年 12月 16日
使用 NVIDIA CUDA MPS 无需修改代码即可提升 GPU 显存性能
NVIDIA CUDA 开发者可以利用多种工具和库来简化开发与部署,使用户能够专注于应用程序的“内容”和“方式”。 多进程服务 (MPS)…
5 MIN READ
2025年 12月 16日
使用 Skip Softmax 加速 NVIDIA TensorRT-LLM 中的长上下文推理
对于大规模部署 LLM 的机器学习工程师来说,这个等式既熟悉又无情:随着上下文长度的增加,注意力计算成本呈爆炸式增长。
4 MIN READ
2025年 12月 15日
利用 NVIDIA MGX 为未来数据中心提供灵活高效性能
重塑计算格局的 AI 热潮将在 2026 年进一步加速扩展。随着模型能力与计算能力的突破持续推动发展,
2 MIN READ
2025年 12月 12日
如何在现代 NVIDIA GPU 架构上扩展快速里叶变换以实现百亿亿次级计算
快速里叶变换 (FFT) 广泛应用于科学计算,涵盖分子动力学、信号处理、计算流体动力学 (CFD)、无线多媒体以及机器学习等领域。
4 MIN READ
2025年 12月 8日
使用 NVFP4 KV 缓存优化大批次与长上下文推理
量化是大规模推理中的关键手段之一。通过降低权重、激活值和KV缓存的精度,可以有效减少内存占用和计算开销,从而显著提升推理吞吐量、降低延迟,
3 MIN READ
2025年 12月 4日
借助功率配置文件优化 AI 和 HPC 工作负载的数据中心效率
不断呈指数级增长的计算需求正推动功耗持续上升,使数据中心面临巨大压力。在设施功耗受限的背景下,提升每瓦功耗的计算性能,
2 MIN READ
2025年 11月 25日
利用 NVIDIA 数据中心监控工具优化 GPU 集群性能
高性能计算(HPC)领域的客户持续快速扩展,生成式AI、大语言模型(LLM)、计算机视觉等应用推动了对GPU资源需求的显著增长。在此背景下,
2 MIN READ
2025年 11月 10日
在 Kubernetes 上启用 NVIDIA GB200 NVL72 及以上型号的多节点 NVLink
NVIDIA GB200 NVL72 将 AI 基础设施提升至全新高度,在大语言模型训练以及可扩展、低延迟推理工作负载的运行方面实现显著突破。
4 MIN READ
2025年 10月 30日
在 Microsoft Azure 上利用 NVIDIA Run:ai 简化 AI 基础设施
现代人工智能工作负载,无论是大规模训练还是实时推理,都需要动态访问高性能 GPU 资源。然而,
3 MIN READ